
SSR
DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES

1 / 62

Optimization Techniques for Big Data Analysis

Chapter 5. Second Order Methods

Master of Science in Signal Theory and Communications
Dpto. de Señales, Sistemas y Radiocomunicaciones

E.T.S. Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

2023



2 / 62

1 Newton algorithm

2 Conjugate gradient method.

3 Quasi-Newton methods



3 / 62

Basics of Newton algorithm

It has been studied in the previous course Fundamentals of
Optimization that Newton’s method is much faster than
gradient descent methods.

xk+1 = xk − ηk
(
∇2f (xk)

)−1∇f (xk)

= xk − ηk△xNew

due to the effect of the Hes-
sian that makes the Newton step
△xNew minimises the best (lo-
cally) quadratic approximation
of f(·).



4 / 62

Basics of Newton algorithm

General update scheme:
xt+1 = xt + ηG(xt)∇f(xt)

where G(xt) ∈ Rd×d is some matrix:

Newton’s method: G(xt) =
(
∇2f(xt)

)−1
= H−1

Gradient descent: G(xt) = λI

Newton’s method: “adaptive gradient descent”, adaptation is
w.r.t. the local geometry of the function at xt.

Unfortunately, calculating G is unfeasible in most real cases.
We are going to cover two sub-optimal approaches:

1 Conjugate Gradient methods: H is available, but its inverse
is not.

2 Quasi-Newton methods: Approximate G iteratively using
first order information (gradients).



5 / 62

Basics of Newton algorithm

General update scheme:
xt+1 = xt + ηG(xt)∇f(xt)

where G(xt) ∈ Rd×d is some matrix:

Newton’s method: G(xt) =
(
∇2f(xt)

)−1
= H−1

Gradient descent: G(xt) = λI

Newton’s method: “adaptive gradient descent”, adaptation is
w.r.t. the local geometry of the function at xt.

Unfortunately, calculating G is unfeasible in most real cases.
We are going to cover two sub-optimal approaches:

1 Conjugate Gradient methods: H is available, but its inverse
is not.

2 Quasi-Newton methods: Approximate G iteratively using
first order information (gradients).



6 / 62

Basics of Newton algorithm

General update scheme:
xt+1 = xt + ηG(xt)∇f(xt)

where G(xt) ∈ Rd×d is some matrix:

Newton’s method: G(xt) =
(
∇2f(xt)

)−1
= H−1

Gradient descent: G(xt) = λI

Newton’s method: “adaptive gradient descent”, adaptation is
w.r.t. the local geometry of the function at xt.

Unfortunately, calculating G is unfeasible in most real cases.

We are going to cover two sub-optimal approaches:
1 Conjugate Gradient methods: H is available, but its inverse

is not.
2 Quasi-Newton methods: Approximate G iteratively using

first order information (gradients).



7 / 62

Basics of Newton algorithm

General update scheme:
xt+1 = xt + ηG(xt)∇f(xt)

where G(xt) ∈ Rd×d is some matrix:

Newton’s method: G(xt) =
(
∇2f(xt)

)−1
= H−1

Gradient descent: G(xt) = λI

Newton’s method: “adaptive gradient descent”, adaptation is
w.r.t. the local geometry of the function at xt.

Unfortunately, calculating G is unfeasible in most real cases.
We are going to cover two sub-optimal approaches:

1 Conjugate Gradient methods: H is available, but its inverse
is not.

2 Quasi-Newton methods: Approximate G iteratively using
first order information (gradients).



8 / 62

Conjugate gradient method

Goal: argmin
x∈Rd

1
2x

TAx− bTx

Equivalently: Ax = b

The conjugate gradient method is an it-
erative method for solving a linear sys-
tem of equations, where A is symmetric
and positive definite.

Definition: A set of non zero vec-
tors {p0,p1, · · ·pd−1} is called A-
orthogonal (conjugate) if:

pT
i Apj = 0 ∀i ̸= j



9 / 62

Conjugate gradient method

Goal: argmin
x∈Rd

1
2x

TAx− bTx

Equivalently: Ax = b

The conjugate gradient method is an it-
erative method for solving a linear sys-
tem of equations, where A is symmetric
and positive definite.

Definition: A set of non zero vec-
tors {p0,p1, · · ·pd−1} is called A-
orthogonal (conjugate) if:

pT
i Apj = 0 ∀i ̸= j



10 / 62

Conjugate gradient method

Goal: argmin
x∈Rd

1
2x

TAx− bTx

Equivalently: Ax = b

The conjugate gradient method is an it-
erative method for solving a linear sys-
tem of equations, where A is symmetric
and positive definite.

Definition: A set of non zero vec-
tors {p0,p1, · · ·pd−1} is called A-
orthogonal (conjugate) if:

pT
i Apj = 0 ∀i ̸= j



11 / 62

Intuition behind the conjugate gradient method

Let’s consider the updating rule:

xk+1 = xk + αkpk

We can decompose the optimum solution as follows [1]:

xQP = x0 + (xQP − x0)

= x0 +
∑d−1

j=0 αjpj

If {pj} are orthogonal:

pT
k xQP = pT

k x0 + αkp
T
k pk

αk =
pT
k (xQP − x0)

pT
k pk

=



12 / 62

Intuition behind the conjugate gradient method

Let’s consider the updating rule:

xk+1 = xk + αkpk

We can decompose the optimum solution as follows [1]:

xQP = x0 + (xQP − x0)

= x0 +
∑d−1

j=0 αjpj

If {pj} are orthogonal:

pT
k xQP = pT

k x0 + αkp
T
k pk

αk =
pT
k (xQP − x0)

pT
k pk

=



13 / 62

Intuition behind the conjugate gradient method

Let’s consider the updating rule:

xk+1 = xk + αkpk

We can decompose the optimum solution as follows [1]:

xQP = x0 + (xQP − x0)

= x0 +
∑d−1

j=0 αjpj

If {pj} are orthogonal:

pT
k xQP = pT

k x0 + αkp
T
k pk

αk =
pT
k (xQP − x0)

pT
k pk

=
pT
k xr

pT
k pk



14 / 62

Intuition behind the conjugate gradient method

Let’s consider the updating rule:

xk+1 = xk + αkpk

We can decompose the optimum solution as follows [1]:

xQP = x0 + (xQP − x0)

= x0 +
∑d−1

j=0 αjpj

If {pj} are orthogonal:

pT
k xQP = pT

k x0 + αkp
T
k pk

αk =
pT
k (xQP − x0)

pT
k pk

=
pT
k xr

pT
k pk



15 / 62

Intuition behind the conjugate gradient method

Since we know A,

AxQP = Ax0 +A(xQP − x0)

= Ax0 +
∑d−1

j=0 αjApj

Premultiplying by pT
k , we could get:

αk =
pT
k (b−Ax)

pT
kApk

=
−gT

0 pk

pT
kApk

only if {pj} are A-orthogonal. So, we don’t need to know the
optimum to estimate αk.

But, what about pk?



16 / 62

Intuition behind the conjugate gradient method

Since we know A,

AxQP = Ax0 +A(xQP − x0)

= Ax0 +
∑d−1

j=0 αjApj

Premultiplying by pT
k , we could get:

αk =
pT
k (b−Ax)

pT
kApk

=
−gT

0 pk

pT
kApk

only if {pj} are A-orthogonal.

So, we don’t need to know the
optimum to estimate αk.

But, what about pk?



17 / 62

Intuition behind the conjugate gradient method

Since we know A,

AxQP = Ax0 +A(xQP − x0)

= Ax0 +
∑d−1

j=0 αjApj

Premultiplying by pT
k , we could get:

αk =
pT
k (b−Ax)

pT
kApk

=
−gT

0 pk

pT
kApk

only if {pj} are A-orthogonal. So, we don’t need to know the
optimum to estimate αk.

But, what about pk?



18 / 62

Intuition behind the conjugate gradient method

Since we know A,

AxQP = Ax0 +A(xQP − x0)

= Ax0 +
∑d−1

j=0 αjApj

Premultiplying by pT
k , we could get:

αk =
pT
k (b−Ax)

pT
kApk

=
−gT

0 pk

pT
kApk

only if {pj} are A-orthogonal. So, we don’t need to know the
optimum to estimate αk.

But, what about pk?



19 / 62

Intuition behind the conjugate gradient method

p0 = g0 = Ax0 − b

x1 = x0 + α0p0

By assuring the gradient at x1 is orthogonal to p0,

gT
1 p0 = (Ax1 − b)Tp0 = 0

and after some replacements,

α0 =
−gT

0 p0

pT
0 Ap0

Now that we can estimate x1,

g1 = Ax1 − b

x2 = x1 + α1p1



20 / 62

Intuition behind the conjugate gradient method

p0 = g0 = Ax0 − b

x1 = x0 + α0p0

By assuring the gradient at x1 is orthogonal to p0,

gT
1 p0 = (Ax1 − b)Tp0 = 0

and after some replacements,

α0 =
−gT

0 p0

pT
0 Ap0

Now that we can estimate x1,

g1 = Ax1 − b

x2 = x1 + α1p1



21 / 62

Intuition behind the conjugate gradient method

p0 = g0 = Ax0 − b

x1 = x0 + α0p0

By assuring the gradient at x1 is orthogonal to p0,

gT
1 p0 = (Ax1 − b)Tp0 = 0

and after some replacements,

α0 =
−gT

0 p0

pT
0 Ap0

Now that we can estimate x1,

g1 = Ax1 − b

x2 = x1 + α1p1



22 / 62

Intuition behind the conjugate gradient method

The composite direction is:

p1 = g1 + β1p0

How do we define β1?

pT
1 Ap0 = gT

1 Ap0 + β1p
T
0 Ap0

β1 =
−gT

1 Ap0

pT
0 Ap0

and using a similar previous analysis, we can carry out the
required update:

α1 =
−gT

1 p1

pT
1 Ap1



23 / 62

Intuition behind the conjugate gradient method

The composite direction is:

p1 = g1 + β1p0

How do we define β1?

pT
1 Ap0 = gT

1 Ap0 + β1p
T
0 Ap0

β1 =
−gT

1 Ap0

pT
0 Ap0

and using a similar previous analysis, we can carry out the
required update:

α1 =
−gT

1 p1

pT
1 Ap1



24 / 62

Intuition behind the conjugate gradient method

The composite direction is:

p1 = g1 + β1p0

How do we define β1?

pT
1 Ap0 = gT

1 Ap0 + β1p
T
0 Ap0

β1 =
−gT

1 Ap0

pT
0 Ap0

and using a similar previous analysis, we can carry out the
required update:

α1 =
−gT

1 p1

pT
1 Ap1



25 / 62

Conjugate gradient method. Algorithm description

Giving a starting point x0, making p0 = g0 and β0 = 0, the
algorithm is represented by:

1 Initialize: k = 0

2 While gk ̸= 0

3 αk =
−gT

k pk

pT
k Apk

4 xk+1 = xk + αkpk

5 gk+1 = ∇f(xk+1) = Axk+1 − b

6 βk+1 =
−gT

k+1Apk

pT
k Apk

7 pk+1 = gk+1 + βk+1pk

8 k = k + 1

It can be shown that this algorithm converges to the solution
xQP in at most d steps.



26 / 62

Example 5.1

Solve the following system of equation Ax = b where

A =

[
4 1
1 3

]
, b =

[
1
2

]
starting from x0 =

[
2
1

]
.

As this is a quadratic problem, we just need two iterations to
solve the problem. Implement the algorithm and verify it.

Solution: [0.09090909, 0.63636364]



27 / 62

Example 5.2

Have a look at example 5.2 on the repository; it corresponds to
applying the Conjugate gradient for solving ridge regression.



28 / 62

Quasi-Newton methods. Basic idea
GD: xk+1 = xk − ηI∇f(xk)

Newton: xk+1 = xk − η(∇2f(xk))
−1∇f(xk)

Quasi-N: xk+1 = xk − ηGk∇f(xk)

Quasi-Newton methods hope for:
1 Gk is more useful than I

2 Gk is less expensive to compute than the inverse of the
Hessian.

A possible naïve approach:



29 / 62

Quasi-Newton methods. Basic idea
GD: xk+1 = xk − ηI∇f(xk)

Newton: xk+1 = xk − η(∇2f(xk))
−1∇f(xk)

Quasi-N: xk+1 = xk − ηGk∇f(xk)

Quasi-Newton methods hope for:
1 Gk is more useful than I

2 Gk is less expensive to compute than the inverse of the
Hessian.

A possible naïve approach:



30 / 62

Quasi-Newton methods. Naïve approach

If elongation is almost aligned with the coordinate, we could get
an acceptable solution by rescaling.

G =




∂2f
∂x2

1
· · · 0

...
. . .

...
0 · · · ∂2f

∂x2
d




−1

What if elongation is not well aligned to axes?
Example:

H =

[
1 0.99

0.99 1

]
The approximation would equal the identity, and we get just
GD.



31 / 62

Quasi-Newton methods. Naïve approach

If elongation is almost aligned with the coordinate, we could get
an acceptable solution by rescaling.

G =




∂2f
∂x2

1
· · · 0

...
. . .

...
0 · · · ∂2f

∂x2
d




−1

What if elongation is not well aligned to axes?

Example:

H =

[
1 0.99

0.99 1

]
The approximation would equal the identity, and we get just
GD.



32 / 62

Quasi-Newton methods. Naïve approach

If elongation is almost aligned with the coordinate, we could get
an acceptable solution by rescaling.

G =




∂2f
∂x2

1
· · · 0

...
. . .

...
0 · · · ∂2f

∂x2
d




−1

What if elongation is not well aligned to axes?
Example:

H =

[
1 0.99

0.99 1

]
The approximation would equal the identity, and we get just
GD.



33 / 62

Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

f̃(xk +∆x) = f(xk) +∇f(xk)
T∆x +

1

2
∆T

xBk∆x

The minimizer ∆xk
of this convex quadratic model is

∆xk
= −B−1

k ∇f(xk)

So, QN: xxxxx xk+1 = xk − ηkB
−1
k ∇f(xk) = xk + ηk∆xk

xxxxxxxxxxxxx Update Bk iteratively.



34 / 62

Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

f̃(xk +∆x) = f(xk) +∇f(xk)
T∆x +

1

2
∆T

xBk∆x

The minimizer ∆xk
of this convex quadratic model is

∆xk
= −B−1

k ∇f(xk)

So, QN: xxxxx xk+1 = xk − ηkB
−1
k ∇f(xk) = xk + ηk∆xk

xxxxxxxxxxxxx Update Bk iteratively.



35 / 62

Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

f̃(xk +∆x) = f(xk) +∇f(xk)
T∆x +

1

2
∆T

xBk∆x

The minimizer ∆xk
of this convex quadratic model is

∆xk
= −B−1

k ∇f(xk)

So, QN: xxxxx xk+1 = xk − ηkB
−1
k ∇f(xk) = xk + ηk∆xk

xxxxxxxxxxxxx Update Bk iteratively.



36 / 62

Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

f̃(xk +∆x) = f(xk) +∇f(xk)
T∆x +

1

2
∆T

xBk∆x

The minimizer ∆xk
of this convex quadratic model is

∆xk
= −B−1

k ∇f(xk)

So, QN: xxxxx xk+1 = xk − ηkB
−1
k ∇f(xk) = xk + ηk∆xk

xxxxxxxxxxxxx Update Bk iteratively.



37 / 62

Quasi-Newton methods. Basic formulation

The point is choosing a feasible Bk+1.

■ We would like B−1
k ∇f(xk) to be easy to compute.

■ We require f̃(xk+1+∆x) matches the gradient of f(·) at the
last two iterations (it is matching curvature at two points).

Let’s represent f̃(xk+1 +∆x) = f̃k+1(∆x), the last condition
implies:

∇f̃k+1

∣∣∣
∆x=0

= ∇f (xk+1)

∇f̃k+1

∣∣∣
∆x=−ηk∆xk

= ∇f (xk)

These conditions mean that Bk locally approximates the
Hessian.



38 / 62

Quasi-Newton methods. Basic formulation

The point is choosing a feasible Bk+1.

■ We would like B−1
k ∇f(xk) to be easy to compute.

■ We require f̃(xk+1+∆x) matches the gradient of f(·) at the
last two iterations (it is matching curvature at two points).

Let’s represent f̃(xk+1 +∆x) = f̃k+1(∆x), the last condition
implies:

∇f̃k+1

∣∣∣
∆x=0

= ∇f (xk+1)

∇f̃k+1

∣∣∣
∆x=−ηk∆xk

= ∇f (xk)

These conditions mean that Bk locally approximates the
Hessian.



39 / 62

Quasi-Newton methods. Basic formulation



40 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,

(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)



41 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,

(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)



42 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)



43 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)



44 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)



45 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk)



46 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)

Bk+1(xk+1 − xk)︸ ︷︷ ︸
sk

= ∇f(xk+1)−∇f(xk)︸ ︷︷ ︸
yk



47 / 62

Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

f̃k+1(∆x) = f(xk+1) +∇f(xk+1)
T∆x +

1

2
∆T

xBk+1∆x

By differentiating with respect to ∆x,

∇f̃k+1(∆x) = ∇f(xk+1) +Bk+1∆x

Therefore,
(i) ∇f̃k+1(0) = ∇f(xk+1) ✓

(ii) ∇f̃k+1(−ηk∆xk
) = ∇f(xk+1)− ηkBk+1∆xk

= ∇f (xk)

Bk+1sk = yk → Secant equation



48 / 62

Quasi-Newton methods. Basic formulation

For d > 1, the secant equation is undetermined.

So, QN
algorithms use:

Bk+1 = argmin ∥B−Bk∥

s.t. B = BT

Bsk = yk

Each choice of the norm ∥ · ∥ gives different Bk+1 and defines a
different QN method. The most widely used algorithms uses
the Weigthed Frobenious norm (WFN):

∥A∥2W = ∥W1/2AW1/2∥F (1)

where W =
∫ 1
0 ∇2f(xk + τηk∆xk

)dτ



49 / 62

Quasi-Newton methods. Basic formulation

For d > 1, the secant equation is undetermined. So, QN
algorithms use:

Bk+1 = argmin ∥B−Bk∥

s.t. B = BT

Bsk = yk

Each choice of the norm ∥ · ∥ gives different Bk+1 and defines a
different QN method. The most widely used algorithms uses
the Weigthed Frobenious norm (WFN):

∥A∥2W = ∥W1/2AW1/2∥F (1)

where W =
∫ 1
0 ∇2f(xk + τηk∆xk

)dτ



50 / 62

Quasi-Newton methods. Basic formulation

For d > 1, the secant equation is undetermined. So, QN
algorithms use:

Bk+1 = argmin ∥B−Bk∥

s.t. B = BT

Bsk = yk

Each choice of the norm ∥ · ∥ gives different Bk+1 and defines a
different QN method. The most widely used algorithms uses
the Weigthed Frobenious norm (WFN):

∥A∥2W = ∥W1/2AW1/2∥F (1)

where W =
∫ 1
0 ∇2f(xk + τηk∆xk

)dτ



51 / 62

Quasi-Newton methods. Basic formulation

The previous choice of W makes Eq. (1) non-dimensional. Its
solution gives rise to the method called
Davidon–Fletcher–Powell (DFP).

Bk+1 = (I− ρkyks
T
k )Bk(I− ρksky

T
k ) + ρkyky

T
k , ρk =

1

yT
k sk

Since the xk+1 updated rule requires Gk = B−1
k , the DFP

algorithm uses:

Gk+1 = Gk −
Gkyky

T
k Gk

yT
k Gkyk

+
sks

T
k

yT
k sk



52 / 62

Quasi-Newton methods. Basic formulation

The previous choice of W makes Eq. (1) non-dimensional. Its
solution gives rise to the method called
Davidon–Fletcher–Powell (DFP).

Bk+1 = (I− ρkyks
T
k )Bk(I− ρksky

T
k ) + ρkyky

T
k , ρk =

1

yT
k sk

Since the xk+1 updated rule requires Gk = B−1
k , the DFP

algorithm uses:

Gk+1 = Gk −
Gkyky

T
k Gk

yT
k Gkyk

+
sks

T
k

yT
k sk



53 / 62

Quasi-Newton methods. Basic formulation

The DFP method was soon superseded by the
Broyden–Fletcher–Goldfarb-Shanno (BFGS) method,
which avoids the need to invert the Hessian calculation and
formulates the algorithm to approximate Gk directly.

Gk+1 = argmin ∥G−Gk∥

s.t. G = GT

Gyk = sk

Using the WFN, the solution is

Gk+1 = (I− ρksky
T
k )Gk(I− ρkyks

T
k ) + ρksks

T
k



54 / 62

Quasi-Newton methods. Basic formulation

The DFP method was soon superseded by the
Broyden–Fletcher–Goldfarb-Shanno (BFGS) method,
which avoids the need to invert the Hessian calculation and
formulates the algorithm to approximate Gk directly.

Gk+1 = argmin ∥G−Gk∥

s.t. G = GT

Gyk = sk

Using the WFN, the solution is

Gk+1 = (I− ρksky
T
k )Gk(I− ρkyks

T
k ) + ρksks

T
k



55 / 62

BFGS algorithm description

For certain tolerance ϵ, given a starting point x0 and making
G0 = I

1 Initialize: k = 0

2 While ∥∇f∥2 > ϵ

3 ∆xk
= −Gk∇f(xk)

4 xk+1 = xk + ηk∆xk
. Use line search to get ηk

5 sk = xk+1 − xk

6 yk = ∇f(xk+1)−∇f(xk)

7 ρk = 1/yT
k sk

8 Gk+1 = (I− ρksky
T
k )Gk(I− ρkyks

T
k ) + ρksks

T
k

9 k = k + 1



56 / 62

Limited memory BFGS

When solving large-scale problems whose Hessian matrices
cannot be computed at a reasonable cost or are not sparse,
limited memory QN methods maintain simple and compact
approximations of the Hessian matrices by saving a few vectors
of dimension d instead of the whole matrix.

In simple terms, it approximates the product Gk∇f(xk) by a
sequence of multiplications and summations of m previous
{si,yi}; i = k −m, ..., k − 1 vectors.

A detailed explanation of it is out of this course’s scope.



57 / 62

Case study 5.1

The goal of this case study is to check the performance of
algorithms BFGS compared with standard Gradient and
Newton solutions for the Ridge problem.



58 / 62

Case study 5.2

The objective now is to check the performance of BFGS
compared with standard Gradient and Newton solutions for the
Logistic-L2 problem.

It can be noticed that quasi-Newton is as competitive as
Newton itself but with much less computational burden.



59 / 62

Acknowledgments

I would like to acknowledge several sources I have used to create
slides
■ Andrew Reader’s course at King’s College London.

https://www.youtube.com/@AndrewJReader

■ Constantine Caramanis’ course at University of Texas
https://www.youtube.com/@constantine.caramanis



60 / 62

Questions?



61 / 62

References

[1] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[2] Jorge Nocedal and J. Wright Stephen. Numerical optimization.
Spinger, 2006.



62 / 62

Thank You
Julián D. Arias-Londoño

julian.arias@upm.es


	Newton algorithm
	Conjugate gradient method.
	Quasi-Newton methods
	References



