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@ Newton algorithm

® Conjugate gradient method.

® Quasi-Newton methods



Basics of Newton algorithm

It has been studied in the previous course Fundamentals of
Optimization that Newton’s method is much faster than
gradient descent methods.
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Basics of Newton algorithm

General update scheme:

Xep1 = X +nG(x) V f(x¢)

where G(x;) € R¥*9 is some matrix:
Newton’s method: G(x;) = (ng(x,g))_1 =H"!
Gradient descent: G(x;) = AL

Newton’s method: “adaptive gradient descent”, adaptation is
w.r.t. the local geometry of the function at x;.

Unfortunately, calculating G is unfeasible in most real cases.
We are going to cover two sub-optimal approaches:

@® Conjugate Gradient methods: H is available, but its inverse
is not.

® Quasi-Newton methods: Approximate G iteratively using

n first order information (gradients).
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Conjugate gradient method

Goal: argminix”Ax —bTx

2
x€eR4

Equivalently: Ax=Db

\

The conjugate gradient method is an it-
erative method for solving a linear sys-
tem of equations, where A is symmetric
and positive definite.

Definition: A set of non zero vec-
tors {po,P1, " -Pg—1} is called A-
orthogonal (conjugate) if:

PIAP; =0  Vi#]
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Let’s consider the updating rule:
Xk+1 = Xk + QkPk
We can decompose the optimum solution as follows [1]:

xXQp =X+ (XQp — Xo)
d—
= X0+ >5—) @jP;

If {p;} are orthogonal:
Pk XQP = Py X0 + QkPj Pk
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Py Pk Py Pk




Intuition behind the conjugate gradient method

Since we know A,

AXQP = Axy+ A(XQP — Xo)

= Axo + Y1) a;Ap,



Intuition behind the conjugate gradient method

Since we know A,
AXQP = Axy+ A(XQP — Xo)
= Axo + Y1) a;Ap,
Premultiplying by p{, we could get:

_pi(b—Ax) _ —gipy
p} Apy, p. Ap;,

293

only if {p;} are A-orthogonal.

—s5p )\



Intuition behind the conjugate gradient method

Since we know A,

AXQP = Axy+ A(XQP — Xo)
= Axo + Y1) a;Ap,

Premultiplying by p{, we could get:

_pi(b—Ax) _ —gipy
p} Apy, p. Ap;,

293

only if {p;} are A-orthogonal. So, we don’t need to know the
optimum to estimate ay.

—s5p )\



Intuition behind the conjugate gradient method

Since we know A,

AXQP = Axy+ A(XQP — Xo)
= Axo + Y1) a;Ap,

Premultiplying by p{, we could get:

_pi(b—Ax) _ —gipy
p} Apy, p. Ap;,

293

only if {p;} are A-orthogonal. So, we don’t need to know the
optimum to estimate ay.

But, what about pj?
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Intuition behind the conjugate gradient method

Po = g8 =Axo—b

X] = Xp+ @Po
By assuring the gradient at x; is orthogonal to pg,
gl po = (Ax; —b)'py =0
and after some replacements,

—goTpo
Pl Apo

oy =

Now that we can estimate x1,

g1 = Ax;—b

SR A X9 = X1+ a1pi
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How do we define 517
pi Apo = g1 Apo + 51p) Apo
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Intuition behind the conjugate gradient method

The composite direction is:

p1 = g1 + B1Po

How do we define 317
pi Apo = g1 Apo + A1P; Apo

—81 Apo

Apo
and using a similar previous analysis, we can carry out the
required update:

pr=

_ —g{pl
p{ Ap;
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Conjugate gradient method. Algorithm description

Giving a starting point xg, making pg = go and 5y = 0, the
algorithm is represented by:

® Initialize: k=0

® While g #0

T
—8r Pk
o =

(4] Xk4+1 = Xk + Pk
(5] gk+1 = Vf(Xp41) = Axp11 — b
7g£+1Apk
164 “pTApL
P APk
(7]

Br+1 =
Phk+1 = 8k+1 + Br+1Pk
(8] k=k+1
It can be shown that this algorithm converges to the solution
Xqp in at most d steps.
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Example 5.1

Solve the following system of equation Ax = b where

4 1 1 . 2
A:{1 3},b:[2]startmgfromxo—[l}.

As this is a quadratic problem, we just need two iterations to
solve the problem. Implement the algorithm and verify it.

Solution: [0.09090909, 0.63636364]
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Example 5.2

Have a look at example 5.2 on the repository; it corresponds to
applying the Conjugate gradient for solving ridge regression.

Error surface. Contour plot. Error surface.
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Quasi-Newton methods. Basic idea

GD: xgq1 = xx — IV f(xp)
Newton: X1 = x — n(V2f (%)) "V f(xk)
Quasi-N: xp11 = xi — NGV f(x1)

Quasi-Newton methods hope for:
® G, is more useful than I

® Gy, is less expensive to compute than the inverse of the
Hessian.



Quasi-Newton methods. Basic idea

GD: xgq1 = xx — IV f(xp)
Newton: X1 = x — n(V2f (%)) "V f(xk)
Quasi-N: xp11 = xi — NGV f(x1)

Quasi-Newton methods hope for:
® G, is more useful than I

® Gy, is less expensive to compute than the inverse of the
Hessian.

A possible naive approach:

Projected Contour of Paraboloid




Quasi-Newton methods. Naive approach

If elongation is almost aligned with the coordinate, we could get
an acceptable solution by rescaling.
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Quasi-Newton methods. Naive approach

If elongation is almost aligned with the coordinate, we could get
an acceptable solution by rescaling.

82f -1
Fr R 0
G= : S
2 f
0o .- o

What if elongation is not well aligned to axes?
Example:
1 0.99
H= [0.99 1 ]

The approximation would equal the identity, and we get just
GD.
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Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.



Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

Flosk+ ) = Fxk) + VS (00) A+ SATBRAL



Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

- 1
Fe 4+ Ax) = fxi) + V(i) Ay + §A£BkAx
The minimizer Ay, of this convex quadratic model is

Ay, = —B; 'V f(x)



Quasi-Newton methods. Basic formulation

Goal: Approximate H without requiring expensive
computation

Key idea: Use curvature information along the generated
trajectory to build the approximation
recursively.

The formulation starts from a quadratic approximation [2]:

- 1
Fe 4+ Ax) = fxi) + V(i) Ay + §A£BkAx
The minimizer Ay, of this convex quadratic model is

Ay, = —B; 'V f(x)

So, QN: X1 = X — By VF(x1) = x5 + 7 Ax,

osp A\/‘— Update By, iteratively.



Quasi-Newton methods. Basic formulation

The point is choosing a feasible By 1.

B We would like B,;1Vf(xk) to be easy to compute.

B We require f(xj11 4+ Ax) matches the gradient of f(-) at the
last two iterations (it is matching curvature at two points).



Quasi-Newton methods. Basic formulation

The point is choosing a feasible By 1.

B We would like B,;1Vf(xk) to be easy to compute.

B We require f(xj11 4+ Ax) matches the gradient of f(-) at the
last two iterations (it is matching curvature at two points).

Let’s represent f(xp41 + Ax) = frs1(Ax), the last condition
implies:
YV fra1

V frt1

= Vf(%Xk41)

= Vf(xk)

Ax=0

Ax:_'r]k:Axk

These conditions mean that By locally approximates the

%ssian.



Quasi-Newton methods. Basic formulation
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

~ 1
Fri1(Ax) = f(Xpp1) + Vi (xp1) Ax + §A£Bkz+1Ax
By differentiating with respect to Ay,

V fet1(Ax) = Vf (xp41) + Brp1Ax

Therefore,

(1) Vfir1(0) = VF(xp11)
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

~ 1
Fri1(Ax) = f(Xpp1) + Vi (xp1) Ax + §A£Bkz+1Ax
By differentiating with respect to Ay,
V fri1(Bx) = Vf(%ps1) + Bry1Ax

Therefore,
(1) Viy1(0) = VF(xp11) v
(1) Vi1 (=mlx,) = VI (xXkr1) — mBri1lx,
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

~ 1
Fri1(Ax) = f(Xpp1) + Vi (xp1) Ax + §A£Bkz+1Ax
By differentiating with respect to Ay,
V fri1(Bx) = Vf(%ps1) + Bry1Ax

Therefore,
(i) kaﬂ(o) = Vf(xks1) v
(i) Vfer1(=mDx,) = VI (Xk+1) — meBri18x, = Vf (%)
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

- 1
Frr1(Ax) = f(xy1) + VI (xpr1) Ax + §A£Bk+1ﬁx
By differentiating with respect to Ay,

Vfes1(Ax) = VF(Xps1) + Bri1Ax

Therefore,
(i) VJka(O) = Vf(xkt1) v
(1) Vfrr1(—melx,) = Vf(xk+1) — meBry18x, = Vf (xk)

Bry1(xpr1 — %) = Vf(xp11) — VF(xk)
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

- 1
fe1(Bx) = f(Xrp1) + Vi (xe1) Ax + §A£Bk+1Ax
By differentiating with respect to Ay,

ka+l(Ax) = Vf(Xit1) + Brr18x

Therefore,
(1) Vfi1(0) = VI (Xp1) ¥
(1) V1 (—mlx,) = VI (Xrp1) — mBiri18x, = Vf (x1)

Biy1(Xp41 — %) = VI (Xpt1) — Vf(xz)

Sk Yk
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Quasi-Newton methods. Basic formulation

Let’s check what the conditions imply,

~ 1
Fri1(Bx) = f(xig1) + Vi (xp1) Ax + §A£Bk+1Ax
By differentiating with respect to Ay,

V fer1(Ax) = Vf (xp41) + Brp1Ax

Therefore,
(1) VJikH(O) = Vf(xk+1) v
(1) Vfrr1(—mdDx,) = VI (Xrp1) — mBiri18x, = Vf (xk)

Bjii1sy = yr — Secant equation
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Quasi-Newton methods. Basic formulation

For d > 1, the secant equation is undetermined.
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Quasi-Newton methods. Basic formulation

For d > 1, the secant equation is undetermined. So, QN
algorithms use:

Biy1 = argmin|B — By
s.t. B=B"
Bsi =y
Each choice of the norm || - || gives different By, and defines a

different QN method. The most widely used algorithms uses
the Weigthed Frobenious norm (WFN):

1Al = WY 2AW2|| (1)

where W = fol V2 f(xk + T, )dT
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Quasi-Newton methods. Basic formulation

The previous choice of W makes Eq. (1) non-dimensional. Its
solution gives rise to the method called
Davidon—Fletcher—Powell (DFP).

1
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Quasi-Newton methods. Basic formulation

The previous choice of W makes Eq. (1) non-dimensional. Its
solution gives rise to the method called
Davidon—Fletcher—Powell (DFP).

1

Bii1 = (I— pryist)Br(I — prskyr) + peyeyr, pr = o
k

Since the xj11 updated rule requires Gi = B;l, the DFP
algorithm uses:

Gryryl Gi . sis)
Vi Geyx yisy




Quasi-Newton methods. Basic formulation

The DFP method was soon superseded by the
Broyden—Fletcher—Goldfarb-Shanno (BFGS) method,
which avoids the need to invert the Hessian calculation and
formulates the algorithm to approximate Gy, directly.



Quasi-Newton methods. Basic formulation

The DFP method was soon superseded by the
Broyden—Fletcher—Goldfarb-Shanno (BFGS) method,
which avoids the need to invert the Hessian calculation and
formulates the algorithm to approximate Gy, directly.

Grt1 = argmin||G — Ggl|
s.t. G=¢G"T
Gy = si

Using the WFN, the solution is

Git1= (I — pisiyi )Gr(I — pryrst) + puskst
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BFGS algorithm description

For certain tolerance €, given a starting point x¢ and making
Go=1
® Initialize: k=0
® While |V f|2 > €
Ay, = -GV f(xx)
X1 = X + M Ax, . Use line search to get ny
Sk = Xk41 — Xk
¥e = Vf(Xp1) — Vf(xx)

pr = 1/yi sk
Git1 = (I — prsiy?)Gr(I — prywst) + prsksy
k=k+1

g ©®o090 06 6o



Limited memory BFGS

When solving large-scale problems whose Hessian matrices
cannot be computed at a reasonable cost or are not sparse,
limited memory QN methods maintain simple and compact
approximations of the Hessian matrices by saving a few vectors
of dimension d instead of the whole matrix.

In simple terms, it approximates the product G,V f(xx) by a
sequence of multiplications and summations of m previous
{si,yi}; i =k —m, ...,k — 1 vectors.

A detailed explanation of it is out of this course’s scope.
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Case study 5.1

The goal of this case study is to check the performance of

algorithms BFGS compared with standard Gradient and
Newton solutions for the Ridge problem.

Ridge Algorithm Ridge Algorithm
— Gradient = Gradient
= Newton 50 = Newton
— BFGS — BFGS
0
-50
-100
¥
-150
A"l
0 500 1000 1500 2000 2500 3000 10 15 20 25 30

Iterations

Iterations




Case study 5.2

The objective now is to check the performance of BFGS
compared with standard Gradient and Newton solutions for the
Logistic-L2 problem.

Logistic-L2. Different implementations Logistic Algorithm (Zoom)

w— Gradient 50
20 = Newton
— BFGS

= Gradient
-60 ~200 | == Newton
= BFGS

0 100 200 300 400 500 0 5 10 15 20 25 30
Iterations Iterations

It can be noticed that quasi-Newton is as competitive as
Newton itself but with much less computational burden.
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