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Some basic concepts

Regarding optimization in machine learning, it is worth to
mention:

B Mathematical Modelling:
Defining and modelling the problem

B Computational optimization:
Algorithms to solve these optimization problems optimally
or near optimially

B Continuous optimization:
It often appears as a relaxation of risk/error minimisation
problems. The learning problem in many parametrized
models involves Continuous Optimization.

B Discrete optimization:

It occurs in inference problems in structured spaces, such as
Feature selection, Data subset selection, Data

» summarization, Architecture search etc.
|



Continuous optimization in ML

Supervised Learning: Logistic Regression, Least Square,
Support Vector Machines, Deep Models.

Unsupervised Learning: k-Means Clustering, Principal
Component Analysis.

Contextual bandits and Reinforcement learning: Soft-Max
estimators and Policy Exponential Models.

Recommender systems: Matrix Completion, Non-Negative
Matrix Factorization, Collaborative Filtering.



Continuous optimization in ML

B Supervised Learning: Logistic Regression, Least Square,
Support Vector Machines, Deep Models.

B Unsupervised Learning: k-Means Clustering, Principal
Component Analysis.

B Contextual bandits and Reinforcement learning: Soft-Max
estimators and Policy Exponential Models.

B Recommender systems: Matrix Completion, Non-Negative
Matrix Factorization, Collaborative Filtering.

Countless ML libraries available implement all kinds of
optimization algorithms (Tensorflow, PyTorch, Scipy, Sklearn,
Vowpal Wabbit, ...)
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Large scale optimization

Different setups and contexts can lead to different algorithm

requirements:

Data collection: Whether data is collected in one node or in
several.

Accelerated optimization: Increase the convergence rate
without making much stronger assumptions.

Parallel optimization: Run the algorithm in different cores
or threats of a node.

Distributed optimization: Run the algorithm in different

nodes using different portions of the data. The solution
could be exact or approximated.

Federated learning: Run the algorithm in different nodes
without sharing any data among nodes.
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Nomenclature

For the most part through this course, we will use n as the
number of training instances and d as the number of
dimensions (features).

Function: f(-)

Scalar: z; single-input function f(x)

d-dimensional vector: x € RY; x; = [x14, T2;, - , Taj]
multi-input function f(x); vector-valued function f(x)
Vector Space: X

Vector Norm: ||x||,

Inner product: Given two vectors w,x € R?, define the

inner product (w,x) = Z?:l WX, = wlx
Random variable X; Matrix: X
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“The selection of the best
element, with regard to some
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Mathematical optimization

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [1].

N
S

Wess
5

RS
) “\*‘\\\\\:‘v §4"Q"

So typically we are given a problem like the following:
T =argmax f(z) s.t. g(x) < a (1)
B /(-) function subject to g(c)ptimization.
B 1 € X variables/parameters that need to be adjusted.
B X is the search space. Z is the optimum.
B () restrictions. f|g, where G C X’; G is the feasible set.
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where x € X C R%; so we want to find a function f(-) that
performs the mapping [/ : X — R, and often we assume that:

y=fo(x)+& e~N(0,0? (2)
Using a dataset D = {(x;,¥;)"_; } and some criterion J(6) we
approximate f(-). This allow us to make predictions of y* given

anew x".
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ML set-up

A typical ML task can be seen like:

X » Yy

— (%) |/

where x € X C R%; so we want to find a function f(-) that
performs the mapping [/ : X — R, and often we assume that:
y=rfolx)+& &~N(0,%) (2)

Using a dataset D = {(x;,¥;)"_; } and some criterion J(6) we
approximate [(-). This allow us to make predictions of y* given
a new x'.

Training f¢(-) corresponds to the optimization of .J(6)!
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Supervised Learning: Modelling

B Data: Given training examples {(x1,¥y1), -, (Xpn, Yn)}
where x; € R? is the feature vector and 1y; is the label.

B Model: Denote the Model by fy(x) with € being the
parameters of the model. e.g. fo(x) = 67x

B Loss Functions: The loss function £ tries to measure the
distance between fy(x;) and y;.
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Supervised Learning: Modelling

Data: Given training examples {(x1,y1), ", (Xn,Yn)}
where x; € R? is the feature vector and 1y; is the label.

Model: Denote the Model by fy(x) with € being the
parameters of the model. e.g. fo(x) = 67x

Loss Functions: The loss function ¢ tries to measure the
distance between fy(x;) and y;.

The generic problem denoted as the expected loss function
can be expressed as:

arg m@in L(0) =E[lg(x,y)] + Ar(0) (3)

where ¢ is the instantaneous loss, r(-) is the reqularizer and
A a regularization factor.
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learning problem, so given a dataset D = {(x;,y;)I";} the loss
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Empirical loss functions

In most of this course’ cases, we are dealing with a supervised
learning problem, so given a dataset D = {(x;,y;)I";} the loss

function takes the form:

L() = %ZEO(X%%) + Ar(0)

i=1

Examples of £:
B Logistic loss:
log(1 + exp (—yifo(xi)))
B Hinge Loss:
max{0,1 — y; fo(x;)}
B Absolute Error: |fp(x;) — vil
B Least Squares: (fy(x;) — vi)?
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Loss

(4)
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Misclassification

Exponential

Binomial Deviance
—— Squared Error
—— Support Vector
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L(0) = Lo(xi,y:) + Ar(0) (5)

B The minimization is performed by using an instantaneous
version of the original gradient.



Instantaneous loss function

A common simplification approximates the original function by
its instantaneous value:

L(0) = Lo(xi,y:) + Ar(0) (5)

B The minimization is performed by using an instantaneous
version of the original gradient.

B When minimizing it, we will have to consider the gradient
noise that will affect convergence properties.



Instantaneous loss function

A common simplification approximates the original function by
its instantaneous value:

L(0) = Lo(xi,y:) + Ar(0) (5)

B The minimization is performed by using an instantaneous
version of the original gradient.

B When minimizing it, we will have to consider the gradient
noise that will affect convergence properties.

B This simplification makes the algorithm very attractive in
big data applications, both because of hardware
requirements and for distributed settings.
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Main characteristics of our problems

B Too many data points, so it is needed efficient iterative
solutions.

» Stochastic optimization
» Algebraic implementations of the algorithms are crucial.

B High dimensional data: Because of the dimensionality of
the parameter spaces, we can’t afford second-order
optimization methods. First-order or simplified
second-order methods are requested.

B Distributed processing is highly desirable.
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Questions?



[1]  Melvyn W Jeter. Mathematical programming: an introduction to
optimization. Routledge, 2018.
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