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1 Introduction
Why take this course?
Basic concepts

2 Optimization problems in Machine Learning
ML setup
Most common optimization problems in ML



3 / 38

Motivation

Optimization is a supporting technology in many numerical
computation-related research fields, such as machine learning,
signal processing, industrial design, and operation research.

machine learning = representation + optimization + evaluation
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Some basic concepts

Regarding optimization in machine learning, it is worth to
mention:
■ Mathematical Modelling:

Defining and modelling the problem

■ Computational optimization:
Algorithms to solve these optimization problems optimally
or near optimially

■ Continuous optimization:
It often appears as a relaxation of risk/error minimisation
problems. The learning problem in many parametrized
models involves Continuous Optimization.

■ Discrete optimization:
It occurs in inference problems in structured spaces, such as
Feature selection, Data subset selection, Data
summarization, Architecture search etc.
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Continuous optimization in ML

■ Supervised Learning: Logistic Regression, Least Square,
Support Vector Machines, Deep Models.

■ Unsupervised Learning: k-Means Clustering, Principal
Component Analysis.

■ Contextual bandits and Reinforcement learning: Soft-Max
estimators and Policy Exponential Models.

■ Recommender systems: Matrix Completion, Non-Negative
Matrix Factorization, Collaborative Filtering.

Countless ML libraries available implement all kinds of
optimization algorithms (Tensorflow, PyTorch, Scipy, Sklearn,
Vowpal Wabbit, ...)
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Large scale optimization

Different setups and contexts can lead to different algorithm
requirements:
■ Data collection: Whether data is collected in one node or in

several.

■ Accelerated optimization: Increase the convergence rate
without making much stronger assumptions.

■ Parallel optimization: Run the algorithm in different cores
or threats of a node.

■ Distributed optimization: Run the algorithm in different
nodes using different portions of the data. The solution
could be exact or approximated.

■ Federated learning: Run the algorithm in different nodes
without sharing any data among nodes.
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Nomenclature

■ For the most part through this course, we will use n as the
number of training instances and d as the number of
dimensions (features).

■ Function: f(·)
■ Scalar: x; single-input function f(x)

■ d-dimensional vector: x ∈ Rd; xi = [x1i, x2i, · · · , xdi]
■ multi-input function f(x); vector-valued function f(x)

■ Vector Space: X
■ Vector Norm: ||x||L
■ Inner product: Given two vectors w,x ∈ Rd, define the

inner product ⟨w,x⟩ =
∑d

j=1wjxj = wTx

■ Random variable X; Matrix: X
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Mathematical optimization

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [1].

So typically we are given a problem like the following:
x̂ = argmax

x
f(x) s.t. g(x) < a (1)

■ f(·) function subject to optimization.
■ x ∈ X variables/parameters that need to be adjusted.
■ X is the search space. x̂ is the optimum.
■ g(·) restrictions. f |G , where G ⊆ X ; G is the feasible set.
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ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a function f(·) that
performs the mapping f : X → R,

and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
n
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!
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Supervised Learning: Modelling

■ Data: Given training examples {(x1, y1), · · · , (xn, yn)}
where xi ∈ Rd is the feature vector and yi is the label.

■ Model: Denote the Model by fθ(x) with θ being the
parameters of the model. e.g. fθ(x) = θTx

■ Loss Functions: The loss function ℓ tries to measure the
distance between fθ(xi) and yi.

The generic problem denoted as the expected loss function
can be expressed as:

argmin
θ

L(θ) = E[ℓθ(x, y)] + λr(θ) (3)

where ℓ is the instantaneous loss, r(·) is the regularizer and
λ a regularization factor.
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Empirical loss functions

In most of this course’ cases, we are dealing with a supervised
learning problem, so given a dataset D = {(xi, yi)

n
i=1} the loss

function takes the form:

L(θ) = 1

n

n∑
i=1

ℓθ(xi, yi) + λr(θ) (4)

Examples of ℓ:
■ Logistic loss:

log(1 + exp (−yifθ(xi)))

■ Hinge Loss:
max{0, 1− yifθ(xi)}

■ Absolute Error: |fθ(xi)− yi|
■ Least Squares: (fθ(xi)− yi)

2
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Instantaneous loss function

A common simplification approximates the original function by
its instantaneous value:

L(θ) = ℓθ(xi, yi) + λr(θ) (5)

■ The minimization is performed by using an instantaneous
version of the original gradient.

■ When minimizing it, we will have to consider the gradient
noise that will affect convergence properties.

■ This simplification makes the algorithm very attractive in
big data applications, both because of hardware
requirements and for distributed settings.
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Main characteristics of our problems

■ Too many data points, so it is needed efficient iterative
solutions.

▶ Stochastic optimization
▶ Algebraic implementations of the algorithms are crucial.

■ High dimensional data: Because of the dimensionality of
the parameter spaces, we can’t afford second-order
optimization methods. First-order or simplified
second-order methods are requested.

■ Distributed processing is highly desirable.
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Questions?
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