
SSR
DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES

1 / 103

Optimization Techniques for Big Data Analysis

Chapter 3. Review of Fundamentals of Convex Optimization

Master of Science in Signal Theory and Communications
Dpto. de Señales, Sistemas y Radiocomunicaciones

E.T.S. Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

2023

2 / 103

1 Introduction
Convex functions
Convergence rates

2 Accelerated gradient descend

3 Non smooth functions
Proximal algorithms

3 / 103

Convex sets
A set C is convex if the line segment between any two points of
C lies in C, i.e., if for any x,y ∈ C and any λ with 0 ≤ λ ≤ 1,
we have

λx+ (1− λ)y ∈ C

left Convex
Middle Not Convex, since line segment not in set
Right Not convex, since some, but not all boundary

points are contained in the set

4 / 103

Convex functions

A function f : Rd → R is convex if (i) dom(f) is a convex set
and (ii) for all x,y ∈ dom(f), λ with 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Geometrically: The line segment between (x, f(x)) and
(y, f(y)) lies above the graph of f (called epigraph)

5 / 103

Convex functions

Let’s think about the following functions, are they convex?
■ f(x) = exp(x)

■ f(x) = log(x)

■ f(x) = sin(x)

■ f(x) = max{x, 0}
■ f(x) = log(1 + exp(−x))

■ f(x) =
√
x

6 / 103

Convex functions

Let’s think about the following functions, are they convex?
■ f(x) = exp(x)

■ f(x) = log(x)

■ f(x) = sin(x)

■ f(x) = max{x, 0}
■ f(x) = log(1 + exp(−x))

■ f(x) =
√
x

7 / 103

Convex functions
If the function f(·) is differentiable, the Jensen inequality can
also be expressed in an alternative way:

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x,y ∈ R

which establishes that the graph of f is above all its tangent
hyperplanes.

Besides, if f(·) is twice differentiable, convexity implies

∇2f (x) ⪰ 0, ∀x ∈ Rd

8 / 103

Convex functions
If the function f(·) is differentiable, the Jensen inequality can
also be expressed in an alternative way:

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x,y ∈ R

which establishes that the graph of f is above all its tangent
hyperplanes.

Besides, if f(·) is twice differentiable, convexity implies

∇2f (x) ⪰ 0, ∀x ∈ Rd

9 / 103

Why is convexity important?

For a Convex function “All local minima are global minima”

Let’s think about an optimization problem:

argmin
x

f(x)

s.t. x ∈ B

From the first-order Taylor’s expansion, we know that the rule:

xk+1 = xk − η∇f(xk), k = 1, 2, ...

is a descent algorithm for small values of η. So, Gradient
descent can find one minimizer if f(·) is convex.

10 / 103

Why is convexity important?

For a Convex function “All local minima are global minima”

Let’s think about an optimization problem:

argmin
x

f(x)

s.t. x ∈ B

From the first-order Taylor’s expansion, we know that the rule:

xk+1 = xk − η∇f(xk), k = 1, 2, ...

is a descent algorithm for small values of η. So, Gradient
descent can find one minimizer if f(·) is convex.

11 / 103

Why is convexity important?

For a Convex function “All local minima are global minima”

Let’s think about an optimization problem:

argmin
x

f(x)

s.t. x ∈ B

From the first-order Taylor’s expansion, we know that the rule:

xk+1 = xk − η∇f(xk), k = 1, 2, ...

is a descent algorithm for small values of η. So, Gradient
descent can find one minimizer if f(·) is convex.

12 / 103

Why is convexity important?

For a Convex function “All local minima are global minima”

Let’s think about an optimization problem:

argmin
x

f(x)

s.t. x ∈ B

From the first-order Taylor’s expansion, we know that the rule:

xk+1 = xk − η∇f(xk), k = 1, 2, ...

is a descent algorithm for small values of η.

So, Gradient
descent can find one minimizer if f(·) is convex.

13 / 103

Why is convexity important?

For a Convex function “All local minima are global minima”

Let’s think about an optimization problem:

argmin
x

f(x)

s.t. x ∈ B

From the first-order Taylor’s expansion, we know that the rule:

xk+1 = xk − η∇f(xk), k = 1, 2, ...

is a descent algorithm for small values of η. So, Gradient
descent can find one minimizer if f(·) is convex.

14 / 103

Smooth optimization
Assuming a Lipschitz (L is the Lipschitz constant) continuous
function:

|f (x)− f (y)| ≤ L ∥x− y∥2
That basically means that it can not change very quickly.

A differentiable function is Lipschitz on a convex domain iff:

∥∇f (x)∥∞ = max
j

|∇f (xj)| ≤ ∞

where xj represents any component of variable x and
max

j
|∇f (xj)| = L.

15 / 103

Smooth optimization
Assuming a Lipschitz (L is the Lipschitz constant) continuous
function:

|f (x)− f (y)| ≤ L ∥x− y∥2
That basically means that it can not change very quickly.

A differentiable function is Lipschitz on a convex domain iff:

∥∇f (x)∥∞ = max
j

|∇f (xj)| ≤ ∞

where xj represents any component of variable x and
max

j
|∇f (xj)| = L.

16 / 103

Smooth optimization
In the literature, functions whose derivatives are Lipschitz
continuous are also known as L−smooth functions (L > 0), i.e.:

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2
This added condition is very remarkable because the Hessian is
upper bounded as follows:

∇2f (x) ⪯ LI ∀x ∈ Rd

If we approximate the original function by a second-order Taylor
series:

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T ∇2f (x) (y − x)

we have the following quadratic upper bound:

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥22

17 / 103

Smooth optimization
In the literature, functions whose derivatives are Lipschitz
continuous are also known as L−smooth functions (L > 0), i.e.:

∥∇f (x)−∇f (y)∥2 ≤ L ∥x− y∥2
This added condition is very remarkable because the Hessian is
upper bounded as follows:

∇2f (x) ⪯ LI ∀x ∈ Rd

If we approximate the original function by a second-order Taylor
series:

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2
(y − x)T ∇2f (x) (y − x)

we have the following quadratic upper bound:

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
∥y − x∥22

18 / 103

Smooth optimization

Meaning: we can set a bound on the function rate of variation.
It defines the maximum speed of convergence of an iterative
algorithm (step-size bound).

19 / 103

Strong convexity
Another important concept is related to strong convexity. We
define a µ−strong convex (µ > 0) if this inequality fulfills:

f (y) ≥ f (x) +∇T f (x) (y − x) +
µ

2
∥y − x∥22

Therefore, this is a quadratic lower bound of f(·).

20 / 103

Strong convexity

For a strongly convex function, “There exists a unique local
minimum which is also global.”

Besides, regarding the second-order condition, we now have

∇2f (x) ⪰ µI ∀x ∈ R

Why is it relevant?
1 Provides “self-tuning” property to the gradient regarding

gradient descent algorithm.
2 Guarantee of faster convergence
3 Guarantee of the existence of a single minimum

21 / 103

Strong convexity

For a strongly convex function, “There exists a unique local
minimum which is also global.”

Besides, regarding the second-order condition, we now have

∇2f (x) ⪰ µI ∀x ∈ R

Why is it relevant?
1 Provides “self-tuning” property to the gradient regarding

gradient descent algorithm.
2 Guarantee of faster convergence
3 Guarantee of the existence of a single minimum

22 / 103

Strong convexity

For a strongly convex function, “There exists a unique local
minimum which is also global.”

Besides, regarding the second-order condition, we now have

∇2f (x) ⪰ µI ∀x ∈ R

Why is it relevant?

1 Provides “self-tuning” property to the gradient regarding
gradient descent algorithm.

2 Guarantee of faster convergence
3 Guarantee of the existence of a single minimum

23 / 103

Strong convexity

For a strongly convex function, “There exists a unique local
minimum which is also global.”

Besides, regarding the second-order condition, we now have

∇2f (x) ⪰ µI ∀x ∈ R

Why is it relevant?
1 Provides “self-tuning” property to the gradient regarding

gradient descent algorithm.
2 Guarantee of faster convergence
3 Guarantee of the existence of a single minimum

24 / 103

Classify the following functions

25 / 103

Example 3.1

Calculate L and µ for the Ridge regressor (norm-2 regularizer)

min
w∈Rd+1

(
1

n
∥Xw − y∥22 +

λ

2
∥w∥22

)

we have: ∇2f (w) = 2
nX

TX+ λI

Since the Hessian matrix H = 2
nX

TX+ λI is symmetric, the
eigendecomposition is H = U(Σ + λI)UT

Considering that X is not full rank (Why?), what can be said
about H for:
■ λ = 0

■ λ = 1

26 / 103

Example 3.1

Calculate L and µ for the Ridge regressor (norm-2 regularizer)

min
w∈Rd+1

(
1

n
∥Xw − y∥22 +

λ

2
∥w∥22

)
we have: ∇2f (w) = 2

nX
TX+ λI

Since the Hessian matrix H = 2
nX

TX+ λI is symmetric, the
eigendecomposition is H = U(Σ + λI)UT

Considering that X is not full rank (Why?), what can be said
about H for:
■ λ = 0

■ λ = 1

27 / 103

Example 3.1

Calculate L and µ for the Ridge regressor (norm-2 regularizer)

min
w∈Rd+1

(
1

n
∥Xw − y∥22 +

λ

2
∥w∥22

)
we have: ∇2f (w) = 2

nX
TX+ λI

Since the Hessian matrix H = 2
nX

TX+ λI is symmetric, the
eigendecomposition is H = U(Σ + λI)UT

Considering that X is not full rank (Why?), what can be said
about H for:
■ λ = 0

■ λ = 1

28 / 103

Example 3.1

Calculate L and µ for the Ridge regressor (norm-2 regularizer)

min
w∈Rd+1

(
1

n
∥Xw − y∥22 +

λ

2
∥w∥22

)
we have: ∇2f (w) = 2

nX
TX+ λI

Since the Hessian matrix H = 2
nX

TX+ λI is symmetric, the
eigendecomposition is H = U(Σ + λI)UT

Considering that X is not full rank (Why?), what can be said
about H for:
■ λ = 0

■ λ = 1

29 / 103

Example 3.1

We know that H =
d∑

j=0
λjuju

T
j . H is known to be positive

semidefinite definite H ⪰ 0 implying that all eigenvalues are non
negative λj ≥ 0 ∀j and matrices uju

T
j ≻ 0.Therefore

d∑
j=0

λjuju
T
j ≤

d∑
j=0

λmaxuju
T
j = λmax

d∑
j=0

uju
T
j = λmaxUUT = λmaxI

d∑
j=0

λjuju
T
j ≥

d∑
j=0

λminuju
T
j = λmin

d∑
j=0

uju
T
j = λminUUT = λminI

Finally, we have

λmin (H) I ⪯ ∇2f (w) ⪯ λmax (H) I ∀w ∈ Rd+1

The quotient λmax / λmin = L/µ is known as the condition
number and affects the convergence rate.

30 / 103

Example 3.1

We know that H =
d∑

j=0
λjuju

T
j . H is known to be positive

semidefinite definite H ⪰ 0 implying that all eigenvalues are non
negative λj ≥ 0 ∀j and matrices uju

T
j ≻ 0.Therefore

d∑
j=0

λjuju
T
j ≤

d∑
j=0

λmaxuju
T
j = λmax

d∑
j=0

uju
T
j = λmaxUUT = λmaxI

d∑
j=0

λjuju
T
j ≥

d∑
j=0

λminuju
T
j = λmin

d∑
j=0

uju
T
j = λminUUT = λminI

Finally, we have

λmin (H) I ⪯ ∇2f (w) ⪯ λmax (H) I ∀w ∈ Rd+1

The quotient λmax / λmin = L/µ is known as the condition
number and affects the convergence rate.

31 / 103

Smoothness/ strong convexity

µI ⪯ ∇2f (w) ⪯ LI

1 Smoothness (L) establishes the maximum step size that
guarantees convergence in iterative processes (η < 1

L).
2 Strong convexity determines that the optimization

process has a single solution and guarantees that the
convergence rate is acceptable because there are no flat
regions (“self-tunning”).

3 If κ = L/µ ≈ 1, the problem is well conditioned, and the
convergence rate using gradient methods is typically very
competitive.

What does data normalization have to do with these
characteristics?

32 / 103

Smoothness/ strong convexity

µI ⪯ ∇2f (w) ⪯ LI

1 Smoothness (L) establishes the maximum step size that
guarantees convergence in iterative processes (η < 1

L).

2 Strong convexity determines that the optimization
process has a single solution and guarantees that the
convergence rate is acceptable because there are no flat
regions (“self-tunning”).

3 If κ = L/µ ≈ 1, the problem is well conditioned, and the
convergence rate using gradient methods is typically very
competitive.

What does data normalization have to do with these
characteristics?

33 / 103

Smoothness/ strong convexity

µI ⪯ ∇2f (w) ⪯ LI

1 Smoothness (L) establishes the maximum step size that
guarantees convergence in iterative processes (η < 1

L).
2 Strong convexity determines that the optimization

process has a single solution and guarantees that the
convergence rate is acceptable because there are no flat
regions (“self-tunning”).

3 If κ = L/µ ≈ 1, the problem is well conditioned, and the
convergence rate using gradient methods is typically very
competitive.

What does data normalization have to do with these
characteristics?

34 / 103

Smoothness/ strong convexity

µI ⪯ ∇2f (w) ⪯ LI

1 Smoothness (L) establishes the maximum step size that
guarantees convergence in iterative processes (η < 1

L).
2 Strong convexity determines that the optimization

process has a single solution and guarantees that the
convergence rate is acceptable because there are no flat
regions (“self-tunning”).

3 If κ = L/µ ≈ 1, the problem is well conditioned, and the
convergence rate using gradient methods is typically very
competitive.

What does data normalization have to do with these
characteristics?

35 / 103

Smoothness/ strong convexity

µI ⪯ ∇2f (w) ⪯ LI

1 Smoothness (L) establishes the maximum step size that
guarantees convergence in iterative processes (η < 1

L).
2 Strong convexity determines that the optimization

process has a single solution and guarantees that the
convergence rate is acceptable because there are no flat
regions (“self-tunning”).

3 If κ = L/µ ≈ 1, the problem is well conditioned, and the
convergence rate using gradient methods is typically very
competitive.

What does data normalization have to do with these
characteristics?

36 / 103

Example 3.2

Review the corresponding notebook.

■ In the code, you can see that we generate a random matrix
with 5 rows and 7 columns. Matrix ATA has dimension
7× 7 but the rank is 5 because A has dimension 5× 7.

■ For this analysis, you need to calculate the eigenvalues and
check that the rank is related to the number of nonzeros
eigenvalues. In this case, you can notice that the last two
are negligible.

■ However, if we add a full rank matrix as the (scaled)
identity matrix, the combination is full rank (7), and the
system is strongly convex because you have a determined
system of equations with a single solution.

37 / 103

Example 3.2

Review the corresponding notebook.
■ In the code, you can see that we generate a random matrix

with 5 rows and 7 columns. Matrix ATA has dimension
7× 7 but the rank is 5 because A has dimension 5× 7.

■ For this analysis, you need to calculate the eigenvalues and
check that the rank is related to the number of nonzeros
eigenvalues. In this case, you can notice that the last two
are negligible.

■ However, if we add a full rank matrix as the (scaled)
identity matrix, the combination is full rank (7), and the
system is strongly convex because you have a determined
system of equations with a single solution.

38 / 103

Example 3.2

Review the corresponding notebook.
■ In the code, you can see that we generate a random matrix

with 5 rows and 7 columns. Matrix ATA has dimension
7× 7 but the rank is 5 because A has dimension 5× 7.

■ For this analysis, you need to calculate the eigenvalues and
check that the rank is related to the number of nonzeros
eigenvalues. In this case, you can notice that the last two
are negligible.

■ However, if we add a full rank matrix as the (scaled)
identity matrix, the combination is full rank (7), and the
system is strongly convex because you have a determined
system of equations with a single solution.

39 / 103

Example 3.2

Review the corresponding notebook.
■ In the code, you can see that we generate a random matrix

with 5 rows and 7 columns. Matrix ATA has dimension
7× 7 but the rank is 5 because A has dimension 5× 7.

■ For this analysis, you need to calculate the eigenvalues and
check that the rank is related to the number of nonzeros
eigenvalues. In this case, you can notice that the last two
are negligible.

■ However, if we add a full rank matrix as the (scaled)
identity matrix, the combination is full rank (7), and the
system is strongly convex because you have a determined
system of equations with a single solution.

40 / 103

Rates of convergence: Nomenclature

Convergence is a fundamental property to assess the quality of
an optimization algorithm, but as a first step, we need to clarify
some terminology.

■ When talking about how fast a positive sequence
{ζk} = {f (xk)− f (x∗)} of scalars is decreasing to zero, we
have different types of convergence rates toward the
optimum value f (x∗).

■ Bounds are expressed in terms of the order of magnitude
O(ζk) of the rate.

■ It is also interesting to calculate the number of iterations
requested in order to achieve a certain accuracy ϵ. That
calculation just required to solve ζk < ε → k <

⌈
ζ−1
k (ε)

⌉
where notation ⌈⌉ refers to the next integer.

41 / 103

Rates of convergence: Nomenclature

Convergence is a fundamental property to assess the quality of
an optimization algorithm, but as a first step, we need to clarify
some terminology.

■ When talking about how fast a positive sequence
{ζk} = {f (xk)− f (x∗)} of scalars is decreasing to zero, we
have different types of convergence rates toward the
optimum value f (x∗).

■ Bounds are expressed in terms of the order of magnitude
O(ζk) of the rate.

■ It is also interesting to calculate the number of iterations
requested in order to achieve a certain accuracy ϵ. That
calculation just required to solve ζk < ε → k <

⌈
ζ−1
k (ε)

⌉
where notation ⌈⌉ refers to the next integer.

42 / 103

Rates of convergence: Nomenclature

Convergence is a fundamental property to assess the quality of
an optimization algorithm, but as a first step, we need to clarify
some terminology.

■ When talking about how fast a positive sequence
{ζk} = {f (xk)− f (x∗)} of scalars is decreasing to zero, we
have different types of convergence rates toward the
optimum value f (x∗).

■ Bounds are expressed in terms of the order of magnitude
O(ζk) of the rate.

■ It is also interesting to calculate the number of iterations
requested in order to achieve a certain accuracy ϵ. That
calculation just required to solve ζk < ε → k <

⌈
ζ−1
k (ε)

⌉
where notation ⌈⌉ refers to the next integer.

43 / 103

Rates of convergence: Nomenclature

Convergence is a fundamental property to assess the quality of
an optimization algorithm, but as a first step, we need to clarify
some terminology.

■ When talking about how fast a positive sequence
{ζk} = {f (xk)− f (x∗)} of scalars is decreasing to zero, we
have different types of convergence rates toward the
optimum value f (x∗).

■ Bounds are expressed in terms of the order of magnitude
O(ζk) of the rate.

■ It is also interesting to calculate the number of iterations
requested in order to achieve a certain accuracy ϵ. That
calculation just required to solve ζk < ε → k <

⌈
ζ−1
k (ε)

⌉
where notation ⌈⌉ refers to the next integer.

44 / 103

Rates of convergence

45 / 103

Rates of convergence

Types of convergence:

Sublinear : ζk → 0, but ζk+1/ζk → 1.
▶ Example: ζk ≤ C/kq, for q > 0 and C > 0
▶ To achieve an ε error k ∼ O

(
1/ε1/q

)
.

Linear : ζk+1/ζk ≤ r for some r ∈ (0, 1).
▶ Example: ζk ≤ Cqk, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(1/ε)).

Superlinear : ζk+1/ζk → 0.
▶ Example: ζk ≤ Cqk

2

, for q ∈ (0, 1) and C > 0

▶ To achieve an ε error, k ∼ O
(√

log(1/ε)
)
.

Quadratic : ζk+1 ≤ ζ2k
▶ Example: ζk ≤ Cq2

k

, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(log(1/ε))).

46 / 103

Rates of convergence

Types of convergence:

Sublinear : ζk → 0, but ζk+1/ζk → 1.
▶ Example: ζk ≤ C/kq, for q > 0 and C > 0
▶ To achieve an ε error k ∼ O

(
1/ε1/q

)
.

Linear : ζk+1/ζk ≤ r for some r ∈ (0, 1).
▶ Example: ζk ≤ Cqk, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(1/ε)).

Superlinear : ζk+1/ζk → 0.
▶ Example: ζk ≤ Cqk

2

, for q ∈ (0, 1) and C > 0

▶ To achieve an ε error, k ∼ O
(√

log(1/ε)
)
.

Quadratic : ζk+1 ≤ ζ2k
▶ Example: ζk ≤ Cq2

k

, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(log(1/ε))).

47 / 103

Rates of convergence

Types of convergence:

Sublinear : ζk → 0, but ζk+1/ζk → 1.
▶ Example: ζk ≤ C/kq, for q > 0 and C > 0
▶ To achieve an ε error k ∼ O

(
1/ε1/q

)
.

Linear : ζk+1/ζk ≤ r for some r ∈ (0, 1).
▶ Example: ζk ≤ Cqk, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(1/ε)).

Superlinear : ζk+1/ζk → 0.
▶ Example: ζk ≤ Cqk

2

, for q ∈ (0, 1) and C > 0

▶ To achieve an ε error, k ∼ O
(√

log(1/ε)
)
.

Quadratic : ζk+1 ≤ ζ2k
▶ Example: ζk ≤ Cq2

k

, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(log(1/ε))).

48 / 103

Rates of convergence

Types of convergence:

Sublinear : ζk → 0, but ζk+1/ζk → 1.
▶ Example: ζk ≤ C/kq, for q > 0 and C > 0
▶ To achieve an ε error k ∼ O

(
1/ε1/q

)
.

Linear : ζk+1/ζk ≤ r for some r ∈ (0, 1).
▶ Example: ζk ≤ Cqk, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(1/ε)).

Superlinear : ζk+1/ζk → 0.
▶ Example: ζk ≤ Cqk

2

, for q ∈ (0, 1) and C > 0

▶ To achieve an ε error, k ∼ O
(√

log(1/ε)
)
.

Quadratic : ζk+1 ≤ ζ2k
▶ Example: ζk ≤ Cq2

k

, for q ∈ (0, 1) and C > 0
▶ To achieve an ε error, k ∼ O (log(log(1/ε))).

49 / 103

Rates of convergence

50 / 103

Example 3.3

Calculate the minimum number of iterations in order to reach
an accuracy ε = 10−5 in the following cases:

1 ζk = 1
k2

. In this case,
1
k2

≤ ε → k ≥
√

1
ε = 316.28 → k = 317.

2 ζk = e−2k. In this case,
e−2k ≤ ε → k ≥ 1

2 ln
1
ε = 5.36 → k = 6.

3 ζk = e−2k2 . In this case,

e−2k2 ≤ ε → k ≥
√

ln 1
ε

2 = 2.4 → k = 3.

51 / 103

Example 3.3

Calculate the minimum number of iterations in order to reach
an accuracy ε = 10−5 in the following cases:

1 ζk = 1
k2

. In this case,
1
k2

≤ ε → k ≥
√

1
ε = 316.28 → k = 317.

2 ζk = e−2k. In this case,
e−2k ≤ ε → k ≥ 1

2 ln
1
ε = 5.36 → k = 6.

3 ζk = e−2k2 . In this case,

e−2k2 ≤ ε → k ≥
√

ln 1
ε

2 = 2.4 → k = 3.

52 / 103

Example 3.3

Calculate the minimum number of iterations in order to reach
an accuracy ε = 10−5 in the following cases:

1 ζk = 1
k2

. In this case,
1
k2

≤ ε → k ≥
√

1
ε = 316.28 → k = 317.

2 ζk = e−2k. In this case,
e−2k ≤ ε → k ≥ 1

2 ln
1
ε = 5.36 → k = 6.

3 ζk = e−2k2 . In this case,

e−2k2 ≤ ε → k ≥
√

ln 1
ε

2 = 2.4 → k = 3.

53 / 103

Example 3.3

Calculate the minimum number of iterations in order to reach
an accuracy ε = 10−5 in the following cases:

1 ζk = 1
k2

. In this case,
1
k2

≤ ε → k ≥
√

1
ε = 316.28 → k = 317.

2 ζk = e−2k. In this case,
e−2k ≤ ε → k ≥ 1

2 ln
1
ε = 5.36 → k = 6.

3 ζk = e−2k2 . In this case,

e−2k2 ≤ ε → k ≥
√

ln 1
ε

2 = 2.4 → k = 3.

54 / 103

The effect of strong-convexity: convergence rates

Some theoretical results [1]:

Gradient Alg. Bound (Upper / Lower) Rate
Conv
η = 1

L

f (xk)− f (x∗) ≤ 2L
k+4 ∥x0 − x∗∥22 O (1/k)

Conv
η = 1

L

f (xk)− f (x∗) ≥ 3L
32(k+1)2

∥x0 − x∗∥22 O
(
1/k2

)
Str. conv
η = 2

µ+L

f (xk)− f (x∗) ≤ L
2

(
κ−1
κ+1

)2k
∥x0 − x∗∥22 O

(
qk
)

Str. conv
η = 2

µ+L

f (xk)− f (x∗) ≥ µ
2

(√
κ−1√
κ+1

)2k
∥x0 − x∗∥2 O

(
qk
)

55 / 103

The effect of strong-convexity: condition number

56 / 103

The effect of strong-convexity: condition number

57 / 103

The effect of strong-convexity: example

Let us consider the Ridge problem

argmin
w∈Rd

f(w) = argmin
w∈Rd

(
1

2
∥Xw − y∥22 +

λ

2
∥w∥22

)
where X ∈ Rn×d with i.i.d. zero mean unit variance Gaussian
entries. The optimum w∗ ∼ N (0, I) → y = Xw∗.

■ Example 3.4: Run gradient descend for λ = 0

■ Example 3.5: Run gradient descend for λ = 0.04L

Plot the evolution of f(w)− f(w∗) in both cases and compare
it with the theoretical results, assuming w0 = 0. Use n = 400
and d = 500.
Note: The function bounds contains the values for the
theoretical bounds.

58 / 103

The effect of strong-convexity: example

Let us consider the Ridge problem

argmin
w∈Rd

f(w) = argmin
w∈Rd

(
1

2
∥Xw − y∥22 +

λ

2
∥w∥22

)
where X ∈ Rn×d with i.i.d. zero mean unit variance Gaussian
entries. The optimum w∗ ∼ N (0, I) → y = Xw∗.
■ Example 3.4: Run gradient descend for λ = 0

■ Example 3.5: Run gradient descend for λ = 0.04L

Plot the evolution of f(w)− f(w∗) in both cases and compare
it with the theoretical results, assuming w0 = 0. Use n = 400
and d = 500.
Note: The function bounds contains the values for the
theoretical bounds.

59 / 103

The effect of strong-convexity: example

Let us consider the Ridge problem

argmin
w∈Rd

f(w) = argmin
w∈Rd

(
1

2
∥Xw − y∥22 +

λ

2
∥w∥22

)
where X ∈ Rn×d with i.i.d. zero mean unit variance Gaussian
entries. The optimum w∗ ∼ N (0, I) → y = Xw∗.
■ Example 3.4: Run gradient descend for λ = 0

■ Example 3.5: Run gradient descend for λ = 0.04L

Plot the evolution of f(w)− f(w∗) in both cases and compare
it with the theoretical results, assuming w0 = 0. Use n = 400
and d = 500.
Note: The function bounds contains the values for the
theoretical bounds.

60 / 103

The effect of strong-convexity: results

61 / 103

Is the gradient method an optimal first-order method?

■ In the previous table, we have seen that there is a gap
between the upper bounds of gradient-like methods and the
best achievable performance (lower bound).

■ We have also seen that the gradient does not always point
to the optimum.

■ There is a straightforward alternative update rule named
accelerated method, or momentum method, that
approaches the optimality.

■ The alternative update rule looks as follows:

vk+1 = γvk − η∇f (zk)
xk+1 = xk + vk+1

where:

62 / 103

Is the gradient method an optimal first-order method?

■ In the previous table, we have seen that there is a gap
between the upper bounds of gradient-like methods and the
best achievable performance (lower bound).

■ We have also seen that the gradient does not always point
to the optimum.

■ There is a straightforward alternative update rule named
accelerated method, or momentum method, that
approaches the optimality.

■ The alternative update rule looks as follows:

vk+1 = γvk − η∇f (zk)
xk+1 = xk + vk+1

where:

63 / 103

Is the gradient method an optimal first-order method?

■ In the previous table, we have seen that there is a gap
between the upper bounds of gradient-like methods and the
best achievable performance (lower bound).

■ We have also seen that the gradient does not always point
to the optimum.

■ There is a straightforward alternative update rule named
accelerated method, or momentum method, that
approaches the optimality.

■ The alternative update rule looks as follows:

vk+1 = γvk − η∇f (zk)
xk+1 = xk + vk+1

where:

64 / 103

Is the gradient method an optimal first-order method?

■ In the previous table, we have seen that there is a gap
between the upper bounds of gradient-like methods and the
best achievable performance (lower bound).

■ We have also seen that the gradient does not always point
to the optimum.

■ There is a straightforward alternative update rule named
accelerated method, or momentum method, that
approaches the optimality.

■ The alternative update rule looks as follows:

vk+1 = γvk − η∇f (zk)
xk+1 = xk + vk+1

where:

65 / 103

Is the gradient method an optimal first-order method?

■ In the previous table, we have seen that there is a gap
between the upper bounds of gradient-like methods and the
best achievable performance (lower bound).

■ We have also seen that the gradient does not always point
to the optimum.

■ There is a straightforward alternative update rule named
accelerated method, or momentum method, that
approaches the optimality.

■ The alternative update rule looks as follows:

vk+1 = γvk − η∇f (zk)
xk+1 = xk + vk+1

where:

66 / 103

Accelerated gradient descend

■ Polyak’s momentum: zk = xk

■ Nesterov’s momentum: zk = xk + γvk

67 / 103

Accelerated gradient descend

The key idea in accelerated methods is the addition of a
momentum term, whereby the next iterate xk+1 depends not
only on the gradient and previous point xk but also on the point
previous to that, xk−1.

If parameters L, µ are known, we use η = 1
L and γ =

√
L−√

µ√
L+

√
µ

If L, µ are not known, η can be determined as a constant
step-size or applying a line search procedure, and γk = k−2

k+1
(making it dependent on the iteration).

68 / 103

Convergence rates. Overview

The upper bounds of accelerated methods are much closer to
the optimum bounds:

Gradient Alg. Upper Bound Rate
Acc. Conv.

η = 1
L

γk = g (γk−1)
f (xk)− f (x∗) ≤ 4L

(k+2)2
∥x0 − x∗∥22 O

(
1/k2

)
Conv
η = 1

L

f (xk)− f (x∗) ≤ 2L
k+4 ∥x0 − x∗∥22 O (1/k)

Acc. Str.conv.
η = 1

L

γ =
√
L−√

µ√
L+

√
µ

f (xk)− f (x∗) ≤ L
(√

κ−1√
κ

)k
∥x0 − x∗∥22 O

(
ck
)

Str. conv
η = 2

µ+L

f (xk)− f (x∗) ≤ L
2

(
κ−1
κ+1

)2k
∥x0 − x∗∥22 O

(
qk
)

Notice that in general c =
√
κ−1√
κ

< q =
(

κ−1
κ+1

)2

69 / 103

Example 3.6

Let us consider the Ridge problem again

argmin
w∈Rd

f(w) = argmin
w∈Rd

(
1

2
∥Xw − y∥22 +

λ

2
∥w∥22

)
Plot the evolution of f(w)− f(w∗) adding the curves
corresponding to the upper bound of the accelerated method
given and the implementation of the accelerated algorithm. Use
the following parameters:

η =
1

L
γ =

√
L−√

µ
√
L+

√
µ

70 / 103

Example 3.6: result

You can notice that the simulated result is very close to the
optimum performance.

71 / 103

Non smooth functions. Subgradient methods

Let us recall that if the function is continuous and convex, then
f (y) ≥ f (x) +∇T f (x) (y − x) .

If the function is non-smooth, we use a different concept: the
subdifferential denoted as ∂f (x) is a set of vectors such that
f (y) ≥ f (x) + ∂T f (x) (y − x).

Consequences:
■ x∗ is a minimizer if and only if 0 is a subgradient of f at x∗.
■ We have lost the “self-tuning” property of the gradient.
■ The subgradient method is not a descent method!

72 / 103

Non smooth functions. Subgradient methods

Let us recall that if the function is continuous and convex, then
f (y) ≥ f (x) +∇T f (x) (y − x) .

If the function is non-smooth, we use a different concept: the
subdifferential denoted as ∂f (x) is a set of vectors such that
f (y) ≥ f (x) + ∂T f (x) (y − x).

Consequences:
■ x∗ is a minimizer if and only if 0 is a subgradient of f at x∗.
■ We have lost the “self-tuning” property of the gradient.
■ The subgradient method is not a descent method!

73 / 103

Non smooth functions. LASSO

However, if a decreasing step is used, the following update
converges:

xk+1 = xk − ηkgk

where ηk is the step size and g ∈ ∂f (x) . In fact, the analysis of
convergence reveals that optimum ηk ∼ 1√

k+1
.

LASSO: The subgradient
of the absolute value is:

∂ |x| =

1

−1

[−1, 1]

x > 0

x < 0

x = 0

74 / 103

Non smooth functions. LASSO

However, if a decreasing step is used, the following update
converges:

xk+1 = xk − ηkgk

where ηk is the step size and g ∈ ∂f (x) . In fact, the analysis of
convergence reveals that optimum ηk ∼ 1√

k+1
.

LASSO: The subgradient
of the absolute value is:

∂ |x| =

1

−1

[−1, 1]

x > 0

x < 0

x = 0

75 / 103

Take a look at some loss functions in ML

Function gradient or subgrad.

Hinge loss max
{
0, 1− yxTw

}
y ∈ {±1} −yx if yxTw < 1

0 otherwise
Logistic loss ln

(
1 + exp

(
−yxTw

))
y ∈ {±1} −y

(
1

1+exp(yxTw)

)
x

Square loss 1
2

(
xTw − y

)2 (
xTw − y

)
x

L2 reg. 1
2 ∥w∥22 w

L1 reg. ∥w∥1 sgn (w)

76 / 103

Non smooth functions. Convergence rates

Regarding convergence rates, it can be shown that:

1 If f (x) is only known to be convex, using the subgradient
descent method, the convergence rate is O

(
1/
√
k
)
, i.e., to

achieve ε accuracy, we need O
(
1/ε2

)
iterations.

2 If f (x) is known to be strongly convex, using the
subgradient descent method, the convergence rate is
O (1/k), i.e., to achieve ε accuracy, we need O (1/ε)
iterations.

Note that subgradient methods are not very competitive
methods either in terms of convergence rate or in terms of
convergence level.

77 / 103

Case study 3.1. SVM

Calculation_subgrad_svm: Recall how the hinge function looks
like.

arg min
w∈Rd+1

(
1

n

n∑
i=1

max
(
1− yi

(
wTxi

)
, 0
)p

+
λ

2
∥w∥22

)

∂f = λw+
1

n

n∑
i=1

{
0

−yixi

if yiw
Txi > 1

if yiw
Txi < 1

78 / 103

Case study 3.1: Results

Plot the evolution of f(w)− f(w∗) for the subgradient method
for constant learning rate and for ηk = 1√

k+1
.

79 / 103

Case study 3.1: Results

Plot the evolution of f(w)− f(w∗) for the subgradient method
for constant learning rate and for ηk = 1√

k+1
.

80 / 103

Proximal operator

Can we do better for non-smooth convex functions?

The essential reason for the slow convergence of those functions
is because there are plenty of subgradients that are large near
and even at the solution

The proximal operator solves this problem by adding a smooth
regularization term:

Proxηkf (z) = argmin
x∈Rd

(
f(x) +

1

2ηk
∥x− z∥22

)
Note that for a convex function f(·), Proxηkf (·) is strictly
convex for 1/2ηk > 0.

81 / 103

Proximal operator

Can we do better for non-smooth convex functions?

The essential reason for the slow convergence of those functions
is because there are plenty of subgradients that are large near
and even at the solution

The proximal operator solves this problem by adding a smooth
regularization term:

Proxηkf (z) = argmin
x∈Rd

(
f(x) +

1

2ηk
∥x− z∥22

)
Note that for a convex function f(·), Proxηkf (·) is strictly
convex for 1/2ηk > 0.

82 / 103

Proximal operator

Can we do better for non-smooth convex functions?

The essential reason for the slow convergence of those functions
is because there are plenty of subgradients that are large near
and even at the solution

The proximal operator solves this problem by adding a smooth
regularization term:

Proxηkf (z) = argmin
x∈Rd

(
f(x) +

1

2ηk
∥x− z∥22

)
Note that for a convex function f(·), Proxηkf (·) is strictly
convex for 1/2ηk > 0.

83 / 103

Example 3.7

f (x) = λ ∥x∥1 → Proxηf (z) = argmin
x

(
1
2η ∥x− z∥22 + λ ∥x∥1

)
which is separable in indexes. So, we can optimize separately
obtaining for the j -coordinate:

Proxηf (zj) = argmin
x

(
1

2η
(x− zj)

2 + λ |x|
)

If we take derivatives we have: 0 ∈ 1
η (x− zj) + λ∂ |x|, so we

have xj = zj − λη sgn (xj) whose solution is:

xj = zj − λη zj > λη
xj = zj + λη zj < −λη

xj = 0 |zj | ≤ λη

84 / 103

Example 3.7
This is usually expressed in a compact way as
xj = Soft (a, b) = (a− b)+ − (−a− b)+ where in this case a = zj
and b = λη and (•)+ = max {0, •} . Therefore, we have:

Proxηf (zj) = Soft (zj , λη)
This function is known as Soft Thresholding operator and is
shown in the next figure.

85 / 103

Example 3.8

Calculate
Proxηf (z) = argmin

x

(
1
2x

TAx+ bTx+ c+ 1
2η ∥x− z∥22

)

The Proximal operator of a Quadratic problem is defined as:

f (x) =
1

2
xTAx+ bTx+ c

Taking derivatives: Ax+ b+ 1
η (x− z) = 0 we get

x =
(
A+ 1

η I
)−1 (

1
ηz− b

)
. So, we have:

Proxηf (z) =
(
A+

1

η
I

)−1(1

η
z− b

)

86 / 103

Example 3.8

Calculate
Proxηf (z) = argmin

x

(
1
2x

TAx+ bTx+ c+ 1
2η ∥x− z∥22

)
The Proximal operator of a Quadratic problem is defined as:

f (x) =
1

2
xTAx+ bTx+ c

Taking derivatives: Ax+ b+ 1
η (x− z) = 0 we get

x =
(
A+ 1

η I
)−1 (

1
ηz− b

)
. So, we have:

Proxηf (z) =
(
A+

1

η
I

)−1(1

η
z− b

)

87 / 103

Proximal gradient

xk+1 = Proxηf (xk) = argmin
x∈Rd

(
f(x) +

1

2η
∥x− xk∥22

)
If f(·) is differentiable, this is equivalent to gradient descent.

Composite functions: Consider an objective function broken
into two parts:

f(x) = g(x) + h(x)

where both g and h are convex, but g is smooth and h is a
non-smooth function with an easy-to-evaluate Prox.

The Proximal gradient, in this case, is equal to [2]:

xk+1 = Proxηh (xk − η∇g(xk))

= argmin
x∈Rd

(
h(x) +

1

2η
∥x− xk + η∇g(xk)∥22

)

88 / 103

Proximal gradient

xk+1 = Proxηf (xk) = argmin
x∈Rd

(
f(x) +

1

2η
∥x− xk∥22

)
If f(·) is differentiable, this is equivalent to gradient descent.

Composite functions: Consider an objective function broken
into two parts:

f(x) = g(x) + h(x)

where both g and h are convex, but g is smooth and h is a
non-smooth function with an easy-to-evaluate Prox.

The Proximal gradient, in this case, is equal to [2]:

xk+1 = Proxηh (xk − η∇g(xk))

= argmin
x∈Rd

(
h(x) +

1

2η
∥x− xk + η∇g(xk)∥22

)

89 / 103

Proximal gradient

xk+1 = Proxηf (xk) = argmin
x∈Rd

(
f(x) +

1

2η
∥x− xk∥22

)
If f(·) is differentiable, this is equivalent to gradient descent.

Composite functions: Consider an objective function broken
into two parts:

f(x) = g(x) + h(x)

where both g and h are convex, but g is smooth and h is a
non-smooth function with an easy-to-evaluate Prox.

The Proximal gradient, in this case, is equal to [2]:

xk+1 = Proxηh (xk − η∇g(xk))

= argmin
x∈Rd

(
h(x) +

1

2η
∥x− xk + η∇g(xk)∥22

)

90 / 103

Iterative Soft-thresholding algorithm (ISTA)

The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)
We take g(w) = 1

n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

91 / 103

Iterative Soft-thresholding algorithm (ISTA)

The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)

We take g(w) = 1
n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

92 / 103

Iterative Soft-thresholding algorithm (ISTA)

The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)
We take g(w) = 1

n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

93 / 103

Iterative Soft-thresholding algorithm (ISTA)

The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)
We take g(w) = 1

n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

94 / 103

Iterative Soft-thresholding algorithm (ISTA)

The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)
We take g(w) = 1

n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

= Soft (rk,j , λη)

95 / 103

Iterative Soft-thresholding algorithm (ISTA)
The LASSO case:

min
w∈Rd+1

(
1

n
∥Xw − y∥22 + λ ∥w∥1

)
We take g(w) = 1

n ∥Xw − y∥22 and h(w) = λ ∥w∥1

Defining the residual vector rk = (wk − η∇g(wk)) with
∇g(wk) = XT (Xwk − y), the problem can be formulated
component-wise:

wk+1,j = argmin
wj

(
1

2η
(wj − rk,j)

2 + λ|wj |
)

= Soft (rk,j , λη)

Convergence rate increases to O (1/k)!

96 / 103

Fast ISTA
The FISTA algorithm is essentially the same procedure,
including the momentum term (there are several possible
implementations):

wk+1 = argmin
w

(
1

2η
∥w − (vk − ηk∇g (vk))∥22 + λ ∥w∥1

)
vk+1 = wk+1 +

k − 2

k + 1
(wk+1 −wk)

Defining a new residual rk = (vk − ηk∇g (vk)), we reach the
final compact expression also component-wise:

wk+1,j = Soft (rk,j , λη) ∀j

vk+1,j = wk+1,j +
k − 2

k + 1
(wk+1,j − wk,j)

Convergence rate increases to O
(
1/k2

)
!

97 / 103

Fast ISTA
The FISTA algorithm is essentially the same procedure,
including the momentum term (there are several possible
implementations):

wk+1 = argmin
w

(
1

2η
∥w − (vk − ηk∇g (vk))∥22 + λ ∥w∥1

)
vk+1 = wk+1 +

k − 2

k + 1
(wk+1 −wk)

Defining a new residual rk = (vk − ηk∇g (vk)), we reach the
final compact expression also component-wise:

wk+1,j = Soft (rk,j , λη) ∀j

vk+1,j = wk+1,j +
k − 2

k + 1
(wk+1,j − wk,j)

Convergence rate increases to O
(
1/k2

)
!

98 / 103

Fast ISTA
The FISTA algorithm is essentially the same procedure,
including the momentum term (there are several possible
implementations):

wk+1 = argmin
w

(
1

2η
∥w − (vk − ηk∇g (vk))∥22 + λ ∥w∥1

)
vk+1 = wk+1 +

k − 2

k + 1
(wk+1 −wk)

Defining a new residual rk = (vk − ηk∇g (vk)), we reach the
final compact expression also component-wise:

wk+1,j = Soft (rk,j , λη) ∀j

vk+1,j = wk+1,j +
k − 2

k + 1
(wk+1,j − wk,j)

Convergence rate increases to O
(
1/k2

)
!

99 / 103

Case study 3.2.

Implement ISTA and FISTA and compare with subgradient
implementations. Complete the code provided in the notebook
case_study_3_2.ipynb. Results should be similar to the
following:

Before completing the
code, take a look at
the following functions
included in the utils
package:
■ ista_lasso

■ fista_lasso

■ prox_normL1

100 / 103

Acknowledgments

I would like to acknowledge several sources I have used to create
slides
■ Martin Jaggi & Nicolas Flammarion’s course at EPFL

https://github.com/epfml/OptML_course

■ Constantine Caramanis course at University of Texas
https://www.youtube.com/@constantine.caramanis

101 / 103

Questions?

102 / 103

References

[1] Sébastien Bubeck et al. “Convex optimization: Algorithms and
complexity”. In: Foundations and Trends® in Machine Learning
8.3-4 (2015), pp. 231–357.

[2] M.A. Davenport, M.B. Egerstedt, and J. Romberg. Proximal
algorithms. Tech. rep. Georgia Tech, 2021.

103 / 103

Thank You
Julián D. Arias-Londoño

julian.arias@upm.es

	Introduction
	Convex functions
	Convergence rates

	Accelerated gradient descend
	Non smooth functions
	Proximal algorithms

	References

