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1 Introduction
Basic overview of Neural Networks
Back-propagation algorithm

2 Stochastic gradient methods
Variable learning rate

3 Improved Gradient methods applied to Neural Networks.

4 Parallel and distributed gradient
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Scheme of a DNN
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Basic unit: the neuron

The basic operation of a single neuron corresponds to:

y = φ

 m∑
j=1

xjwj + w0

 = φ
(
wTx

)
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DNN output function

For a neural network of with one hidden layer, the p-th output
for one input xi = [x1,i, x2,i, · · · , xj,i, · · · , xd,i]T is given by,

op(xi) = φ(2)

m1∑
l=1

w
(2)
pl φ

(1)

 d∑
j=1

w
(1)
lj xj,i + w

(1)
l0

+ w
(2)
p0



To estimate it, the forward pass does the following:

Layer 1 → υ
(1)
l,i =

d∑
j=0

w
(1)
lj xj,i z

(1)
l,i = φ(1)

(
υ
(1)
l,i

)
Layer 2 → υ

(2)
p,i =

m1∑
l=0

w
(2)
pl z

(1)
l,i z

(2)
p,i = φ(2)

(
υ
(2)
p,i

)
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Cost function

Depending on the task, a specific loss function L is required.
For the sake of simplicity, we are going to use MSE without loss
of generality.

L(W) =
1

n

n∑
i=1

ℓW(xi, yi)
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Cost function

Depending on the task, a specific loss function L is required.
For the sake of simplicity, we are going to use MSE without loss
of generality.

L(W) =
1

n

n∑
i=1

ℓW(xi, yi) =
1

n

n∑
i=1

e2i =
1

n

n∑
i=1

(o(xi)− yi)
2

Note that the DNN could have multiple outputs, in that case
be yi = [y1,i, · · · , yp,i, · · · , yq,i], the q-dimensional vector with
the labels for the i-th sample.

L(W) =
1

n

n∑
i=1

q∑
p=1

e2p,i =
1

n

n∑
i=1

q∑
p=1

(op,i − yp,i)
2
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Weights update rule

During one iteration of the learning algorithm:

w(t)[k + 1] = w(t)[k]− η
∂L
∂w(t)

Considering the former example, if t = 2 the updating rule looks
like:
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w
(2)
pl [k + 1] = w

(2)
pl [k]−

η

n

n∑
i=1

∂ℓp,i
∂ep,i

∂ep,i

∂φ
(2)
p,i

∂φ
(2)
p,i

∂υ
(2)
p,i

∂υ
(2)
p,i

w
(2)
pl [k]
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pl [k + 1] = w
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pl [k]−
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n∑
i=1


∂ℓp,i
∂ep,i

∂ep,i
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The updating rule for t = 1 (backward pass) looks like this:

w
(1)
lj [k+1] = w

(1)
lj [k+1]−η

n

n∑
i=1

q∑
p=1

δp,i
∂υ

(2)
p,i

z
(1)
l,i

∂z
(1)
l,i

∂φ
(1)
l,i

∂φ
(1)
l,i

∂υ
(1)
l,i

∂υ
(1)
l,i

∂w
(1)
lj [k]





16 / 60

Signal flows
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Gradient calculation

All factors in the updating rules can be calculated easily:

∂ℓp,i
∂ep,i

→ 2(op,i − yp,i)

∂ep,i

∂φ
(2)
p,i

→ 1

∂φ
(2)
p,i

∂υ
(2)
p,i

→ φ
′(2)

(
υ
(2)
p,i

)
∂υ

(2)
p,i

∂w
(2)
pl

→ z
(1)
l,i

∂υ
(2)
p,i

∂z
(1)
l,i

→ w
(2)
p,l

∂z
(1)
l,i

∂φ
(1)
l,i

→ 1

∂φ
(1)
l,i

∂υ
(1)
l,i

→ φ
′(1)(υ

(1)
l,i )

∂υ
(1)
l,i

∂w
(1)
lj

→ xj,i
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Activation Functions

Sigmoid

φ(u) =
exp(u)

1 + exp(u)
=

1

1 + exp(−u)

φ
′
(u) = φ(u)(1− φ(u))∂u
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Activation Functions

Sigmoid

φ(u) =
exp(u)

1 + exp(u)
=

1

1 + exp(−u)

φ
′
(u) = φ(u)(1− φ(u))∂u

Hyperbolic tangent

φ(u) =
exp(u)− exp(−u)

exp(u) + exp(−u)

φ
′
(u) = (1− (φ(u))2)∂u
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Activation Functions

Sigmoid

φ(u) =
exp(u)

1 + exp(u)
=

1

1 + exp(−u)

φ
′
(u) = φ(u)(1− φ(u))∂u

Hyperbolic tangent

φ(u) =
exp(u)− exp(−u)

exp(u) + exp(−u)

φ
′
(u) = (1− (φ(u))2)∂u

Softmax

φ(up) =
exp(up)∑C
l=1 exp(ul)

,
∂φ(up)

∂ul
= φ(up)(ιpl−φ(ul)), ιpl =

{
1 if p = l
0 if p ̸= l
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Remarks

It is worth highlighting the following:
■ The objective function is non-convex.

▶ It’s most likely to have saddle points than local minima in
high-dimensional spaces.

▶ There exists a negative curvature for every saddle point.

■ The theoretical analysis of the NN is hard to undertake.
■ The computational complexity (in terms of time and

memory) depends on the number of samples n, the
dimensionality of the input space d, and the number of
hidden layers.
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Remarks

It is worth highlighting the following:
■ The objective function is non-convex.

▶ It’s most likely to have saddle points than local minima in
high-dimensional spaces.

▶ There exists a negative curvature for every saddle point.

■ The theoretical analysis of the NN is hard to undertake.
■ The computational complexity (in terms of time and

memory) depends on the number of samples n, the
dimensionality of the input space d, and the number of
hidden layers.

Think about what the algorithm needs to keep in memory for a
whole epoch (forward and backward passes)
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Stochastic Gradient Methods

f(w) = E[ℓw(x)] + r(w)

For the standard gradient descent, during iteration k, we need
access to the actual gradient vector ∇wf(wk).

Let’s assume it is not available (because data is too big or
cannot be centralized).

In this case, the expectation f(w) must be replaced by an
instantaneous approximation of it, fs (w) = ℓw(x) + r(w). This
is what we label it as the stochastic approach:

wk+1 = wk − η∇wfs (wk)



26 / 60

Stochastic Gradient Methods

f(w) = E[ℓw(x)] + r(w)

For the standard gradient descent, during iteration k, we need
access to the actual gradient vector ∇wf(wk).

Let’s assume it is not available (because data is too big or
cannot be centralized).

In this case, the expectation f(w) must be replaced by an
instantaneous approximation of it, fs (w) = ℓw(x) + r(w). This
is what we label it as the stochastic approach:

wk+1 = wk − η∇wfs (wk)



27 / 60

Stochastic Gradient Methods

f(w) = E[ℓw(x)] + r(w)

For the standard gradient descent, during iteration k, we need
access to the actual gradient vector ∇wf(wk).

Let’s assume it is not available (because data is too big or
cannot be centralized).

In this case, the expectation f(w) must be replaced by an
instantaneous approximation of it, fs (w) = ℓw(x) + r(w). This
is what we label it as the stochastic approach:

wk+1 = wk − η∇wfs (wk)



28 / 60

Stochastic Gradient Methods

Working with gradient estimates instead of the gradient itself
implies certain impairments that we have to take into account.

sk (wk) = ∇wfs (wk)−∇wf (wk)

This noise perturbation is known as Gradient Noise Process
1 Prevents the stochastic iterate from converging to the

optimum w∗ when constant step sizes are used (less
convergence level).

2 Some deterioration in performance occurs since the iterate
wk will instead fluctuate close to w∗ in the steady state
regime.
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Stochastic Gradient Methods.Performance metrics

1 Mean Square Deviation (MSD) that refers to the
fluctuations level of the sequence of the coefficients around
the optimum value.

2 On the other hand the Excess Risk (ER) refers to the mean
deviation at the end of convergence of the objective
function along the sequence of coefficients with respect to
the objective function particularized at the optimum value.

For fixed step size, we have (let us remind that for decaying step
size MSD = ER = 0 but paying extra convergence time):

MSD ≜ lim
k→∞

E
{
∥wk −w∗∥22

}
ER = lim

k→∞
E {f (wk)− f (w∗)}
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Examples

Have a look at the examples; in all of them, the addressed
problem corresponds to ridge regression:

Example_4_1: Learning curve
and error surface for FOM.

Example_4_2: Learning curve
and error surface for SOM.

Example_4_3: Learning curve
and error surface for SGD.
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Case studies

■ Case_study_4_1: This is just an overview of the previous
examples putting all together.

■ Case_study_4_2: This is a similar exercise but focuses on
the logistic functions instead.
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Minibatch

Stochastic behaviour has positive effects regarding saddle points!
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Minibatch

Stochastic behaviour has positive effects regarding saddle points!
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Setting the learning rate

■ Theoretical approaches regarding the estimation of L and
mu are unfeasible in Big Data applications.

■ Classical approaches to update the learning rate at each
step.

▶ Exact Line Search: Chose ηk = argmin
η

f(wk − η∇f(wk))

▶ Backtracking Line Search: Reduce ηk by a factor γ until the
smooth condition f(wk+1) ≤ f(wk)− δηk∥∇f(wk)∥22 is
satisfied.

■ Learning rate schedulers:

▶ Cosine annealing (warm restart) [1]:

ηk = ηmin+
1

2
(ηmax−ηmin)

(
1 + cos

(
Tcur

T

))
Tcur accounts for how many epochs have been
performed since the last restart. You can also
increase T by a Tmul factor every restart.
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Adaptive Gradient Algorithm (Adagrad)

Decay the learning rate for parameters in proportion to their
update history (more updates means more decay).

The update rule used is:

gk+1 = gk + (∇f(wk))
2

wk+1 = wk −
η

√
gk+1 + ε

⊙∇f(wk)

with g0 = 0. The step size is adjusted automatically:
parameters with large accumulated gradient have a smaller step,
and parameters with small accumulated gradient have a larger
update.

This feature of Adagrad makes it also useful for dealing with
sparse data.
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RMSProp / Adadelta.

In Adagrad, the sum of the gradients is always increasing; thus
the algorithm stops learning eventually.

Unlike Adagrad, in RMSProp instead of allowing this sum to
increase continuously over the training period, we allow the sum
to decrease.

gk+1 = βgk + (1− β) (∇f(wk))
2

wk+1 = wk −
η

√
gk+1 + ε

⊙∇f(wk)

with g0 = 0, β ≃ 0.9. RMSProp exhibits the same property of
speeding up the updating of the weights along one dimension
and slowing down the motion along the other.

A similar algorithm to RMSProp, developed independently, is
Adadelta [3].
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Adaptive moment estimator (Adam)

Adam intuitively consists in adding momentum to RMSProp to
improve its convergence speed.

vk+1 = β1vk − (1− β1)∇f (wk)

gk+1 = β2gk + (1− β2) (∇f(wk))
2

wk+1 = wk −
η

√
gk+1 + ε

⊙ vk+1

To address the giant update steps happening at the beginning of
training, Adam applies a bias correction: v̂k+1 =

vk+1

1−βk
1

and

ĝk+1 =
gk+1

1−βk
2
. Usually β1 = 0.9 and β2 = 0.999.
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ĝk+1 =
gk+1

1−βk
2
. Usually β1 = 0.9 and β2 = 0.999.



44 / 60

Adaptive moment estimator (Adam)

Adam intuitively consists in adding momentum to RMSProp to
improve its convergence speed.

vk+1 = β1vk − (1− β1)∇f (wk)

gk+1 = β2gk + (1− β2) (∇f(wk))
2

wk+1 = wk −
η

√
gk+1 + ε

⊙ vk+1

To address the giant update steps happening at the beginning of
training, Adam applies a bias correction: v̂k+1 =

vk+1

1−βk
1

and
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Case_studies and examples

Go to the repository and take a look to following notebooks:

■ Example_4_4: Ridge regression using Adam optimizer.
■ Case_study_4_3: Vanilla NN for a regression problem

using SGD.
■ Case_study_4_4: Same network than before but using

Adam optimizer.
■ Case_study_4_5: Vanilla NN for solving the XOR problem.
■ Case_study_4_6: Vanilla NN for a nonlinear classification

problem.
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Parallel and distributed gradient

Gradient methods are also amenable to parallel and distributed
implementations:
■ Parallel refers to using multiple processors in the same

computer.
■ Distributed is a more general concept, in which the

computations are distributed among many different
computers. It has to deal with:
▶ Latency problems
▶ Synchronicity problems

Let us recall the gradient update rule for the least squares
problem:

wk+1 = wk − µk

[
2

n

n∑
i=1

(
wT

k xi − yi
)
xi

]
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Parallel and distributed gradient

wk+1 = wk − µk

[
2

n

n∑
i=1

(
wT

k xi − yi
)
xi

]
If we have a computer with M = 1 processor, for each iteration
k, the processor must:

■ Obtain the n vector operations of the sum
■ Perform the sum
■ Perform the update

The most time-consuming part is obtaining the n sum terms,
which you may notice are independent.

So, if we have hardware with M > 1, we can split the
computations of the sum terms across them.
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Map - Reduce

Map - Reduce is a programming paradigm developed for
processing data in distributed file systems (Hadoop). Its logic is
based on two operations: 1) Map and 2) Reduce.

Applied to GD it would work like this:
■ Map step: split the n-sized training dataset into M subsets

(partitions) with L training samples each, and let each
processor obtain pm,k,m ∈ 1, 2, ...,M :

pm,k =
mL−1∑

j=(m−1)L

(
wT

k xj − yj
)
xj
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Map - Reduce

■ Reduce step: update the gradient:

wk+1 = wk − 2
µk

n

M∑
m=1

pm,k

This step collects the computations done in the Map step to
obtain an update.

If Reduce computation time is negligible compared to the Map
computation time, the parallel version may speed up the
computation by a factor up to M .

This, however, is hard to reach in real life due to other possible
bottlenecks, such as memory access.
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Distributed gradient

■ The Map-Reduce scheme can also be used in a distributed
setting, but we must consider communication-related
problems (latency), especially in synchronous schemes, as
we need all computers to wait for the others to make an
update.

■ It is possible to develop more advanced, asynchronous
approaches, such as HOGWILD! [2], that only requires
nodes (processors) access to shared memory with the
possibility of overwriting each other work.

■ If the optimization problem is sparse (most gradient
updates only modify small parts of the decision variable),
HOGWILD! achieves an early optimal rate of convergence.
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Questions?
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