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Basic problems in supervised learning

We will be focused on two basic problems:
■ Linear regression
■ Linear classification

Considering a sample xi = [xi1, xi2, · · · , xid], the model will be a
form of: f(xi) = w1xi1 +w2xi2 + · · ·+wdxid +w0 = wTxi +w0.

For compactness, we can define an extended vector x̄i = [xi, 1]
T

and a parameter vector w̄ = [w, w0]
T .

The optimization problem in those cases takes the form:

argmin
w̄

1

n

n∑
i=1

ℓ(w̄T x̄i, yi) + r(w̄) (1)
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Regularizer

The regularizer adds an extra term (usually a norm) that
penalizes/enforces certain characteristics of w.

r (w) =
λ

2
∥w∥22 =

λ

2

d∑
j=1

w2
j

r (w) = λ ∥w∥1 = λ
d∑

i=j

|wj |
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Linear regression from a Statistical Signal Processing view

In the general case of an arbitrary observable distribution
ŷ = g(x) = E(Y |X = x). If we assume that variables (Y,X) are
jointly Gaussian, p(y|x) ∼ N (y|µy|x,Σy|x), where:

µy|x = µY +ΣT
X,Y Σ

−1
Y (x− µX)

Equivalently:

p(y|x,w, β) = N
(
f(x,w), β−1)

= N
(
wTx, β−1

)
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ŷ = g(x) = E(Y |X = x). If we assume that variables (Y,X) are
jointly Gaussian, p(y|x) ∼ N (y|µy|x,Σy|x), where:

µy|x = µY +ΣT
X,Y Σ

−1
Y (x− µX)

Equivalently:

p(y|x,w, β) = N
(
f(x,w), β−1)

= N
(
wTx, β−1

)



10 / 70

Least Square Error
Given a data set D = {(xi, yi)

n
i=1}, of i.i.d samples, the

likelihood function is [1]:

p(y|X,w, β) =

n∏
i=1

N
(
yi|wTxi, β

−1
)

For numerical stability, it is convenient to maximize the
logarithm of the likelihood function:

ln p(y|X,w, β) = −β

2

n∑
i=1

(
wTxi − yi

)2
+

n

2
lnβ − n

2
ln(2π)

This is equivalent to minimizing:

L(w) =
1

2

n∑
i=1

(
wTxi − yi

)2
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Linear Regression as a Least Square problem

argmin
w∈Rd+1

1

n

n∑
i=1

ℓ(wTxi, yi) = argmin
w∈Rd+1

1

n

n∑
i=1

(wTxi − yi)
2

In matrix terms, by defining the matrix X = [x1,x2, · · · ,xn]
T

and the vector y = [y1, y2, · · · , yn]T ,

argmin
w∈Rd+1

1

n

n∑
i=1

(wTxi − yi)
2 = argmin

w∈Rd+1

1

n
∥Xw − y∥22

Whose analytical solution is:

1

n
XT (Xw − y) = 0; w∗ =

(
XTX

)−1
XTy
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Error in Least Square
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Ridge regression

L(w) = argmin
w∈Rd+1

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

Whose analytical solution turns into:

w∗ =

(
XTX+

λn

2
I

)−1

XTy

Multiple interpretations:
■ Reduce overfitting (promotes smoothness)
■ Reduce the variance of the estimator
■ Makes the matrix invertible

Probabilistic derivation:

p(w|λ) = N (w|0, λ−1I)

→ L(w) =
1

2

n∑
i=1

(
wTxi − yi

)2
+

λ

2
wTw
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LASSO regression
LASSO (Least Absolute Shrinkage and Selection Operator)
looks similar but uses a L1 regularizer instead:

L(w) = argmin
w∈Rd+1

1

n
∥Xw − y∥22 + λ∥w∥1

Considerations:
■ Promotes sparseness
■ The gradient is not a smooth function (optimizing it

requires subgradient or proximal methods)
■ Corresponds to imposing a zero-mean Laplacean prior over

w.
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Basis pursuit

1 Basis pursuit is a similar problem to linear regression but
with a different goal: the idea now is to find a good fit for
the given data as a linear combination of a small number of
the basis functions.

2 In this context, the basis family use to be referred to as a
dictionary.

3 The goal now is that we seek a function ϕ that fits the data
well:

Φ (xi) ≈ yi ∀i

such that this function can be expressed as a linear combination
of a particular basis:

Φ (x) =

d∑
j=0

wjϕj (x)
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Basis Pursuit
The formulation is well known to us (typically an L1-norm is
added):

argmin
w∈Rd+1


1

n

n∑
i=1


d∑

j=0

wjϕj (xi)︸ ︷︷ ︸
Φ(xi)

− yi


2

+ λ ∥w∥1



In matrix form, we define:

X =

 ϕ0 (x1) · · · ϕd (x1)
...

. . .
...

ϕ0 (xn) ϕd (xn)


and we reach the standard LASSO-like expression:

L(w) = argmin
w∈Rd+1

1

n
∥Xw − y∥22 + λ∥w∥1
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Basis Pursuit. Example 2_1

Let us suppose that our observable has the following structure

y = w1ϕ1 (x) + w2ϕ2 (x) + ε

where x ∈ (0, 10) and the two arbitrary basis are

ϕ1 (x) = cos
π

3
x, ϕ2 (x) = sin

π

7
x

and ε a white Gaussian noise with power σ2
n. The objective is to

write a Python code to calculate coefficients w1, w2 from y
according to

min
x∈Rd

(
1

N
∥Xw − y∥22

)
Next figure shows the case where w1 = 2, w2 = 3 and σ2

n=0.25.
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Example 2_1 (Denoising)
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Classification. Basic ideas

The classification problem is just like the regression problem,
except that the values yi that we want to predict take on only a
small number of discrete values.

We will show two very popular approaches:
■ Logistic Regression
■ Support Vector Machines (SVM)

We will be just focused on the binary case, yi ∈ {+1,−1}, in
order to simplify the interpretations.

Extensions to more classes are straightforward.
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Classification. Basic ideas

In this case, we talk about discriminative functions as those
that represent the borders of decision regions.



33 / 70

Optimum Bayesian boundary

Defining the probability of a certain hypothesis conditioned to a
certain observable

P (Hi | x) =
p(x | Hi)P (Hi)

p(x)

after the Bayes rule and, since p(x) ≥ 0 and it does not depend
on i, to maximize the likelihood a posteriori is equivalent to
maximize the numerator resulting in the rule based on the
likelihood functions

Accept Hi iff p(X | Hi)P (Hi) > p(X | Hj)P (Hj), ∀j ̸= i

or, taking logarithms

Accept Hi iff ln p(X | Hi)+lnP (Hi) > ln p(X | Hj)+lnP (Hj),∀j ̸= i
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Optimum Bayesian classification in the Gaussian case

Therefore, in general, a Bayesian classifier will use a decision
rule type

Accept Hi iff gi(X) > gj(X), ∀j ̸= i

where gi(x), i = 0, 1, . . . ,M − 1 (M = 2 for the binary case) are
called discriminant functions. For a two-class, we can define a
single discriminant function

g(x) ≡ g1(x)− g2(x)

which decides H1 if g(x) > 0; otherwise decide H2. The borders
between the decision regions of the hypotheses is the set of
points x ∈ Rd where g(x) = 0.
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Linear classifier

Suppose that the observation vector follows a multivariate
Gaussian distribution: X ∼ N (µ,Σ).

The discriminative function for the i-th class will be [2]:

gi(x) = −d
2 ln 2π − 1

2 ln |Σi| − 1
2x

TΣ−1
i x+ µT

i Σ
−1
i x− 1

2µ
T
i Σ

−1
i µi + lnP (Hi)

■ Case 1: Σi = σ2I

gi(x) = wT
i x+ wi0 → wi =

1
σ2µi; wi0 =

−1
2σ2µ

T
i µi + lnP (Hi)

■ Case 2: Σi = Σ

gi(x) = wT
i x+ wi0 → wi = σ−1µi; wi0 =

−1
2 µT

i Σ
−1µi + lnP (Hi)
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Linear classifier
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Quadratic Classifier

■ Case 3: Σi = arbitrary

gi(x) = xTWix+wT
i x+ wi0

Wi = −1

2
Σ−1
i

wi = Σ−1
i µi

wi0 =
−1

2
µT
i Σ

−1
i µi −

1

2
ln |Σi|+ lnP (Hi)

There is an additional case where you assume that Σi is
arbitrary but diagonal, which is call Naïve Bayes Classifier.
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Quadratic classifier
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Quadratic classifier
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Quadratic classifier
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Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

maxL = log

(
n∏

i=1

pyii (1− pi)
(1−yi)

)
; yi ∈ {0, 1}

To model pi = p(xi;w, w0) = P (Y = 1|X = xi;w, w0), logistic

regression uses the inverse of a logit function to map the output
of a linear function to the interval (0, 1).

p(xi;w, w0) =
1

1 + exp (−(wTxi + w0))

= g(w̄T x̄i)



45 / 70

Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

maxL = log

(
n∏

i=1

pyii (1− pi)
(1−yi)

)
; yi ∈ {0, 1}

To model pi = p(xi;w, w0) = P (Y = 1|X = xi;w, w0), logistic

regression uses the inverse of a logit function to map the output
of a linear function to the interval (0, 1).

p(xi;w, w0) =
1

1 + exp (−(wTxi + w0))

= g(w̄T x̄i)



46 / 70

Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

maxL = log

(
n∏

i=1

pyii (1− pi)
(1−yi)

)
; yi ∈ {0, 1}

To model pi = p(xi;w, w0) = P (Y = 1|X = xi;w, w0), logistic

regression uses the inverse of a logit function to map the output
of a linear function to the interval (0, 1).

p(xi;w, w0) =
1

1 + exp (−(wTxi + w0))
= g(w̄T x̄i)



47 / 70

Logistic loss
argmax

w
L =

n∑
i=1

log
(
(g(wTxi))

yi
)
+ log

(
(1− g(wTxi))

(1−yi)
)

=

n∑
i=1

yi log
(
g(wTxi)

)
+ (1− yi) log

(
1− g(wTxi)

)

argmax
w

L =

n∑
i=1

log
(
(g(wTxi))

yi
)
+ log

(
(1− g(wTxi))

(1−yi)
)

=
n∑

i=1

yi log
(
g(wTxi)

)
+ (1− yi)log

(
1− g(wTxi)

)︸ ︷︷ ︸
log(g(−wTxi))

By resetting yi ∈ {+1,−1} and taking numerical stability into
consideration,

argmin
w

L = − 1

n

n∑
i=1

log
(
g(yiw

Txi)
)

=
1

n

n∑
i=1

log(1 + exp (−yiw
Txi))

It is straightforward to add a regularisation term r(w).
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Support Vector Machines

Which one do you prefer?
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Support Vector Machines

SVM provides a solution based on the idea of maximising the
margin between the closest points of the classes.
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Support Vector Machines

■ Suppose that we find among all the points of the two classes
those that are the most critical because they are the closest.

■ We draw two hyperplanes over these points and define the
discriminant function as the hyperplane in between.

■ The equation of this hyperplane is

wTx+ b = 0

where w is a vector orthogonal to the hyperplane and b is
an offset parameter.

■ The other two hyperplanes parallel to the first one are
denoted by

wTx+ b = γ

and
wTx+ b = −γ
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Support Vector Machines

However, we can normalize just the hyperplane equation:

c
(
wTx+ b

)
= 0

where c is an arbitrary constant.
Let us choose this constant c = γ, so the two parallel
hyperplanes become

wTx+ b = ±1

Clearly, the intention is to design wT , b so that

wTx+ b ≥ 1 ⇒ yi = 1 wTx+ b ≤ −1 ⇒ yi = −1
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Support Vector Machines
The aim is then to maximise the margin, which corresponds to
the distance between the points and the decision hyperplane:

yif(xi)

∥w∥
=

yi(w
Txi + b)

∥w∥

which can be rewrite as [3]:

argmin
w,b

1

2
∥w∥2 Subject to yi(w

Txi + b) ≥ 1

In practice, we must relax the restrictions because the problem
cannot be linearly separable.

argmin
w,b,ζi≥0

1
2 ∥w∥22 + α

∑n
i=1 ζi

s.t. : yi
(
wTxi + b

)
≥ 1− ζi

ζi ≥ 0
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Hinge loss
If we transform the inequality constraints in an approximate
unconstrained problem, we get:

yi
(
wTxi + b

)
= 1− ζi → ζi = max

{
0, 1− yi

(
wTxi + b

)}
so, we have:

arg min
w∈Rd,b∈R

(
1

2
∥w∥22 + α

n∑
i=1

max
(
1− yi

(
wTxi + b

)
, 0
))

where α intends to penalize deviations from the feasibility
region. It could also be rewritten as:

arg min
w∈Rd,b∈R

(
1

n

n∑
i=1

max
(
1− yi

(
wTxi + b

)
, 0
)
+

λ

2
∥w∥22

)
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SVM loss function

As we have already mentioned, in practice, we will use an
equivalent definition by compacting model parameters:

arg min
w∈Rd+1

(
1

n

n∑
i=1

max
(
1− yi

(
wTxi

)
, 0
)p

+
λ

2
∥w∥22

)
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Code repository

Some functions must be reviewed in detail:
■ Generation: Get_data_reg, Scenarios_regression,

Get_data_class, Scenarios_classification. (Have a
look at Examples 2_3 and 2_5)

■ utils: solver_cvx, plot_surface, test_phase_reg,
test_phase_class. (Have a look at Examples 2_6, 2_7,
2_8, 2_9)

■ Case_studies: Compilation of topics.

▶ case_study_2_1 (Regression): Understand how the data is
generated, training and testing datasets, and the effect of
regularization in the error surface.

▶ case_study_2_2 (Classification): What can we expect if
the class means are asymmetric? See the effect of
regularization in the loss function.
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Neural networks. General architecture
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Questions?
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