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@ Basic problems in supervised learning
@ Linecar Regression
@ Classification

@ Basic introduction to Neural Networks
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Basic problems in supervised learning

We will be focused on two basic problems:
B Linear regression
B Linear classification

Considering a sample x; = [z;1, 2, -+ , x;q], the model will be a
form of: f(x;) = wizi1 + waTia + -+ + WaTia + Wo = W X; + wo.
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Basic problems in supervised learning

We will be focused on two basic problems:
B Linear regression
B Linear classification

Considering a sample x; = [z;1, 2, -+ , x;q], the model will be a
form of: f(x;) = wizi1 + waTia + -+ + WaTia + Wo = W X; + wo.

For compactness, we can define an extended vector %; = [x;, 1]
and a parameter vector w = [w, wp|’.

The optimization problem in those cases takes the form:

N _
- iy Y1 1
argﬁrlnngE(w Xi, Yi) + (W) (1)

=1
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Regularizer

The regularizer adds an extra term (usually a norm) that
penalizes/enforces certain characteristics of w.

3 P (
r (W) = 5 Hng = 5 Zw? /mwn%f
j=1




Regularizer

The regularizer adds an extra term (usually a norm) that
penalizes/enforces certain characteristics of w.

A P I
P = 2wl = 2 3 u? o~
Jj=1 .

d
r(w)=A ”WHl = AZ |wj‘ Alwl,
i=j
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Linear regression from a Statistical Signal Processing view
In the general case of an arbitrary observable distribution
7 =g(x) = E(Y|X = x). If we assume that variables (Y, X) are
jointly Gaussian, p(y|x) ~ N (y|yx, Xyx), where:

Hy|x = Ky + E§7YE;1(X - NX)



Linear regression from a Statistical Signal Processing view
In the general case of an arbitrary observable distribution
7 =g(x) = E(Y|X = x). If we assume that variables (Y, X) are
jointly Gaussian, p(y|x) ~ N (y|yx, Xyx), where:

Hy|x = Ky + E%,Yzﬁ_fl (X - NX)

Equivalently:

p(y|x,w,,6) = N(f(x7w)7/6_1) ,

y(xo, w)
N (WTX7 ,6’71) /




Least Square Error

Given a data set D = {(x;,y;)[~}, of i.i.d samples, the
likelihood function is [1]:

n

plyX,w,8) =[N (vilw"xi, 87")
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plyX,w,8) =[N (vilw"xi, 87")
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For numerical stability, it is convenient to maximize the
logarithm of the likelihood function:
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Least Square Error

Given a data set D = {(x;,y;)[~}, of i.i.d samples, the
likelihood function is [1]:

n

plyX,w,8) =[N (vilw"xi, 87")

i=1
For numerical stability, it is convenient to maximize the

logarithm of the likelihood function:

B — n n
Inp(y|X,w,3) = EZ wl X; — yz glnﬁ — §ln(27r)

This is equivalent to minimizing:

L(w) == Z (waZ yl)
8584/ \-



Linear Regression as a Least Square problem

n

1
argmlnf E {(wl'x;,y;) = argmin — E (wlx; —y;)?
weRd+1 T weRd+1 T



Linear Regression as a Least Square problem

n

1 T 2
ar mm—g {(whx; = ar mm—g w'X; — Y
ngRd+1 n v yZ) Gng+1 n 1( ’ yl)
In matrix terms, by defining the matrix X = [x1,%2, -+ ,Xp|"

and the vector y = [y1,y2, JJn]T’

n

1
arg min — E (wlx; —y;)? = argmin 7HXW y||3
weRd+1 T im1 weRd+1 T



Linear Regression as a Least Square problem

n

1

T 2
ar mm—g {(whx; = ar mm—g w'X; — Y
weng+1 n i yz) ngHl n 1( i yz)
In matrix terms, by defining the matrix X = [x1,%2, -+ ,Xp|"

and the vector y = [y1,y2, JJn]T’

n

1
arg min — E (wlx; —y;)? = argmin 7HXW y||3
WERGH—l n i=1 WeRd+1

Whose analytical solution is:

-1

%XT(XW —y)=0; w" = (X'X) X'y
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Error in Least Square
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Ridge regression

L(w )—argmln—HXW Y||2+ HW”%
wecRd+1 T



Ridge regression

L(w )_argmln—HXW y||2+ HWH%
weRd+1 T

Whose analytical solution turns into:

T )\n 1T
XX+ — X'y



Ridge regression

L(w )—argmln—HXW yli3+= HWH%
weRd+1 T

Whose analytical solution turns into:
A\ -1
(XTX el > xTy

Multiple interpretations:
B Reduce overfitting (promotes smoothness)
B Reduce the variance of the estimator

B Makes the matrix invertible
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Ridge regression

L(w )—argmln—HXW yli3+= HWH%
weRd+1 T

Whose analytical solution turns into:
A\ -1
(XTX el > xTy

Multiple interpretations:
B Reduce overfitting (promotes smoothness)
B Reduce the variance of the estimator

B Makes the matrix invertible

Probabilistic derivation:
p(w|X) = N (w0, A7)
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Ridge regression

L(w )—argmln—HXW yli3+= HWH%
weRd+1 T

Whose analytical solution turns into:
A\ -1
(XTX el > xTy

Multiple interpretations:
B Reduce overfitting (promotes smoothness)
B Reduce the variance of the estimator

B Makes the matrix invertible

Probabilistic derivation:
p(w|X) = N(wl[0,A7'T) —
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Ridge regression

L(w )—argmln—HXW yli3+= HWH%
weRd+1 T

Whose analytical solution turns into:
A\ -1
(XTX el > xTy

Multiple interpretations:
B Reduce overfitting (promotes smoothness)
B Reduce the variance of the estimator

B Makes the matrix invertible

Probabilistic derivation:
1 A
p(WA) = N(w|0, A7) — L(w) = Z wlx; — yz) + Zwlw

A T2 ~ 2

n
1=



LASSO regression

LASSO (Least Absolute Shrinkage and Selection Operator)
looks similar but uses a L regularizer instead:

L(w )—argmm*HXw yI3 + Allwll
weRdJrl
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B The gradient is not a smooth function (optimizing it
requires subgradient or proximal methods)

B Corresponds to imposing a zero-mean Laplacean prior over
w.



LASSO regression

LASSO (Least Absolute Shrinkage and Selection Operator)
looks similar but uses a L; regularizer instead:

£(w) = axgmin [ Xw — y[3 + Aw,
weRd+1 T
Considerations:
B Promotes sparseness
B The gradient is not a smooth function (optimizing it
requires subgradient or proximal methods)
B Corresponds to imposing a zero-mean Laplacean prior over

Weight
sharing

Compromise...
Two parameters ...

inducing

L1 Norm 12 Norm L1 + L2 Norm



Basis pursuit

@ Basis pursuit is a similar problem to linear regression but
with a different goal: the idea now is to find a good fit for
the given data as a linear combination of a small number of
the basis functions.

® In this context, the basis family use to be referred to as a
dictionary.

® The goal now is that we seek a function ¢ that fits the data
well:

Q (x;) ~ vy Vi

such that this function can be expressed as a linear combination
of a particular basis:

d
O (x) = wjd;(x)
=0
588\ ’



Basis Pursuit

The formulation is well known to us (typically an L1-norm is

added):

2

d
|1
arg min —Z ij¢j(xi)_yi + Al[wlly
weRTHL | VST 550
—_—
‘I)(Xz)



Basis Pursuit

The formulation is well known to us (typically an L1-norm is

added):

2

weRd+1

d
NERS
argmin | — ST widi (i) —wi |+ Alwll
=1 j=
—_——
P (xi)
In matrix form, we define:

do(x1) -+ ¢a(x1)
X — . , .

%o (Xn) bd (Xn)
and we reach the standard LASSO-like expression:

sp [\, L(w) = argmm*HXW ylI3 + Alwlly
weRd+1 T



Basis Pursuit. Example 2 1

Let us suppose that our observable has the following structure

y = w11 (z) + w22 (v) + ¢

where x € (0,10) and the two arbitrary basis are

o1 () = cos gx, ¢o (1) = sin %aj

and € a white Gaussian noise with power o2. The objective is to
write a Python code to calculate coefficients wy, ws from y

according to
. 1 2
min [ — || Xw —
i (5 [ - vI2)

Next figure shows the case where wy = 2, wy = 3 and 03:0.25.
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Example 2 1 (Denoising)

Basis Pursuit problem

0 DA



Classification. Basic ideas

The classification problem is just like the regression problem,
except that the values y; that we want to predict take on only a
small number of discrete values.

We will show two very popular approaches:
B Logistic Regression
B Support Vector Machines (SVM)

We will be just focused on the binary case, y; € {+1,—1}, in
order to simplify the interpretations.

Extensions to more classes are straightforward.
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Classification. Basic ideas

In this case, we talk about discriminative functions as those
that represent the borders of decision regions.

; Data set
151 o =34

°o f-1%

Boundary
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Optimum Bayesian boundary

Defining the probability of a certain hypothesis conditioned to a

certain observable
H;)P(H;
P, | ) PO HOP(H)
p(x)

after the Bayes rule and, since p(x) > 0 and it does not depend
on 7, to maximize the likelihood a posteriori is equivalent to
maximize the numerator resulting in the rule based on the
likelihood functions

Accept H; iff p(X | H;)P(H;) > p(X | H;)P(H;), Vj # i
or, taking logarithms
Accept H; iff Inp(X | H;)+In P(H;) > Inp(X | H;)+In P(H;),Vj # i
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Optimum Bayesian classification in the Gaussian case

Therefore, in general, a Bayesian classifier will use a decision

rule type
Accept H; iff g;(X) > g;(X), Vj #i

where g;(x), 1 =0,1,...,M —1 (M = 2 for the binary case) are
called discriminant functions. For a two-class, we can define a
single discriminant function

9(x) = g1(x) — ga(x)

which decides H; if g(x) > 0; otherwise decide Ha. The borders
between the decision regions of the hypotheses is the set of
points x € R? where g(x) = 0.

—s5p )\



Linear classifier

Suppose that the observation vector follows a multivariate
Gaussian distribution: X ~ N (i, ).

The discriminative function for the i-th class will be [2]:

gi(x) = —g In2m — 3 In[%;] — %XTEjlx +ulex — %piTZ;llui +1n P(H;)
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Linear classifier

Suppose that the observation vector follows a multivariate
Gaussian distribution: X ~ N (i, ).

The discriminative function for the i-th class will be [2]:

gi(x) = —g In2m — 3 In[%;] — %XTEjlx +ulex — %piTZ;llui +1n P(H;)

B Case 1: ¥, =021
gi(x) = wlx +wip — w; = ‘7—12;%; w0 = %u?m +In P(H;)
B Case2: ¥, =X

gi(X) = Wik +wip — Wi =0 'y wio = 5pd B i + In P(H;)
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Linear classifier

P(Hy) = P(H;) = 1/2. Border regions decision



Quadratic Classifier

B Case 3: X; = arbitrary

gi(x) = xI'W;x + wiTx + wip

1 -1
_ y—1

—1 e 1
wip = 7;521. Ly — gl 13| + In P(H;)



Quadratic Classifier

B Case 3: X; = arbitrary
gi(x) = xI'W;x + wiTx + wip

|

—1 e 1
wip = 7;521. Ly — gl 13| + In P(H;)

There is an additional case where you assume that ¥; is
arbitrary but diagonal, which is call Naive Bayes Classifier.

—s5p )\



Quadratic classifier

1
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The border is an ellipse
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Quadratic classifier

The border is a hyperbola



Quadratic classifier
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Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

max £ = log (Hpii(l —pi)(l_yi)> ;v €10,1}

i=1



Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

n

max L = log (Hpii(l —pi)(l_yi)> ;v €40,1}
i=1

To model p; = p(x4; w,wp) = P(Y = 1|X = x;; w, wp), logistic

regression uses the inverse of a logit function to map the output
of a linear function to the interval (0, 1).

1
1+ exp (—(wTx; + wyp))

p(xi; W, wo) =
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Logistic Regression

Like Linear regression, we can apply the maximum likelihood
criterion to a classification problem. Assuming a Bernoulli
distribution (2-class problem):

n

max L = log (Hpii(l —pi)(l_yi)> ;v €40,1}
i=1

To model p; = p(x4; w,wp) = P(Y = 1|X = x;; w, wp), logistic

regression uses the inverse of a logit function to map the output
of a linear function to the interval (0, 1).
1 _ T _
)

p(xi;w,wo) = 1+6Xp (—(WTXi‘f—U)O)) :g(W X
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n Logrstlc loss
argmax L = Z]Og W Xz )+log <( g(W X, ))(1 y))

— Zyllog wix;)) + (1 —y)log (1 — g(w'x;))



Logistic loss
argmax £ = Zlog (wTx))") +log ((1 = g(w” ;)17

= Zyz log (9(w"x;)) + (1 — y;)log (1 — g(w"x;))

log(g(—wx;))




Logistic loss
argmax L = Zlog )92) + log <( —g(w x))(l Zh))

— Zyz log W XZ)) + (1 — yl)log (1 — g(WTXZ))

log(g(—wx;))

By resetting y; € {+1, —1} and taking numerical stability into
consideration,



Logistic loss
argmax L = Zlog )92) + log <( —g(w x))(l Zh))

— Zyz log W XZ)) + (1 — yl)log (1 — g(WTXZ))

log(g(—wx;))

By resetting y; € {+1, —1} and taking numerical stability into
consideration,

argmin L = —fZIOg 9(yiw xz))

w



Logistic loss
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log(g(—wx;))

By resetting y; € {+1, —1} and taking numerical stability into
consideration,
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Logistic loss
argmax L = Zlog )92) + log <( —g(w x))(l Zh))

— Zyz log W XZ)) + (1 — yl)log (1 — g(WTXZ))

log(g(—wx;))

By resetting y; € {+1, —1} and taking numerical stability into
consideration,

argmin L = —fZIOg 9(yiw xz))

w
= = Z log(1 + exp (—y;w" x;))
=1

It is straightforward to add a regularisation term r(w).
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Support Vector Machines
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Support Vector Machines

SVM provides a solution based on the idea of maximising the
margin between the closest points of the classes.

I




Support Vector Machines

Suppose that we find among all the points of the two classes
those that are the most critical because they are the closest.

We draw two hyperplanes over these points and define the
discriminant function as the hyperplane in between.

The equation of this hyperplane is
wix+b=0

where w is a vector orthogonal to the hyperplane and b is
an offset parameter.

The other two hyperplanes parallel to the first one are
denoted by
wlix+b=r

and
wlix+b=—vy



Support Vector Machines

However, we can normalize just the hyperplane equation:
c (wa + b) =0

where c is an arbitrary constant.
Let us choose this constant ¢ = vy, so the two parallel
hyperplanes become

wix+b==+1

Clearly, the intention is to design w’,b so that

wix+b>1=y =1 wix+b<-1=y =—-1
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Support Vector Machines

The aim is then to maximise the margin, which corresponds to
the distance between the points and the decision hyperplane:

which can be rewrite as [3]:

1
arg min EHW\P Subject to y;(w!x; +b) > 1
w,b

)



Support Vector Machines

The aim is then to maximise the margin, which corresponds to
the distance between the points and the decision hyperplane:

which can be rewrite as [3]:

1
arg min §HWH2 Subject to y;(w!x; +b) > 1
w,b

)

In practice, we must relax the restrictions because the problem
cannot be linearly separable.

arg min 3 [|lwl3 + a Y7, G
W7b7<220

s.t. 1 y; (wai + b) >1-¢

sep [\ ¢G>0



Hinge loss

If we transform the inequality constraints in an approximate
unconstrained problem, we get:

Yi (wai—&-b) =1-¢ —>Ci:max{0,1—yi (wai—i—b)}

so, we have:

n
arg min (1 [wl|3 + aZmaX (1 -y (whx; +b) ,0))
weERT bR \ 2 i—



Hinge loss

If we transform the inequality constraints in an approximate
unconstrained problem, we get:

Yi (wai—&-b) =1-¢ —>Ci:max{0,1—yi (wai—i—b)}

so, we have:

n
arg min (1 [wl|3 + aZmaX (1 -y (whx; +b) ,0))
weERT bR \ 2 i—

where « intends to penalize deviations from the feasibility
region. It could also be rewritten as:

n
arg min (1 Zmax (1 —y; (wh'x; +0),0) + % ||W||§>

n
weR? beR i—1



SR M\ weRd+1

SVM loss function

——Hinge
45} ——Logistic
——Exponential
4 ——Zero-One
3.5¢F
3
25¢
2 L
1.5+
1
0.5¢
o L
-3 2 1 0 1 2 3

As we have already mentioned, in practice, we will use an
equivalent definition by compacting model parameters:

1 A
arg min (n Zmax (1—y (WTxi) ,0)p + 5 HWH;)

i=1



Code repository

Some functions must be reviewed in detail:

B Generation: Get_data_reg, Scenarios_regression,
Get_data_class, Scenarios_classification. (Have a
look at Examples 23 and 2_5)
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Code repository

Some functions must be reviewed in detail:

B Generation: Get_data_reg, Scenarios_regression,
Get_data_class, Scenarios_classification. (Have a
look at Examples 23 and 2_5)

B utils: solver_cvx, plot_surface, test_phase_reg,
test_phase_class. (Have a look at Examples 2 6,2 7,
2 8,2 9)

B Case studies: Compilation of topics.

» case_study_2_1 (Regression): Understand how the data is
generated, training and testing datasets, and the effect of
regularization in the error surface.

> case_study_2_2 (Classification): What can we expect if
the class means are asymmetric? See the effect of
regularization in the loss function.
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Neural networks. General architecture




Questions?
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