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Coordinate descent

min
x

f(x); x = [x0, x1, · · · , xj , · · · , xd]

The coordinate descent (CD) method proposes to minimize f(·)
across one dimension at a time, turning the problem into
consecutive one-dimensional optimization problems [1].

Why would you use CD instead of GD?

■ The gradient is impossible to
calculate

■ The feasible region is constrained
■ A massive amount of variables to

optimize
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Coordinate descent

min
x

f(x); x = [x0, x1, · · · , xj , · · · , xd]

The coordinate descent (CD) method proposes to minimize f(·)
across one dimension at a time, turning the problem into
consecutive one-dimensional optimization problems [1].

Why would you use CD instead of GD?
■ The gradient is impossible to

calculate
■ The feasible region is constrained
■ A massive amount of variables to

optimize

We can also group the variables into block of dimension mj , and
optimise one block at a time; that’s call Block Coordinate
Descent.



10 / 35

Block Coordinate Descent

The BCD algorithm consists of solving our block-structured
problem in an iterative manner. On iteration k we compute

xk+1,j = argmin
xj∈Xj

f (xj , xk,−j)

xk+1,l = xk,l, ∀l ̸= j

where xk,−j ≜ (xk,1, · · · , xk,j−1, xk,j+1, · · · , xk,d). In the next
iteration, a different coordinate, for instance, j + 1, is updated.

The method is very intuitive and simple to implement, and very
popular in many applications. However, it does not have
guaranteed convergence for an arbitrary function f .
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Example_6_1

Ridge regression:

argmin
w∈Rd+1

f(w) = argmin
w∈Rd+1

1

2

∥∥y −Xw
∥∥2
2
+

λ

2
∥w∥22

minimizing over wj with all wl, l ̸= j fixed,
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Gradient Coordinate Descent.

xk+1,j = xk,j − η∇xjf (xk)

xk+1,j = xk,j ∀j ̸= i

where xk = xk,1, · · · , xk,j−1, xk,j , · · · , xk,d is the pivoting point
around whom we have evaluated the gradient over block
variable xj at instant k.

1 If f is non-smooth, we could incorporate projected or
proximal updates.

2 The SGD is also applicable, where an instantaneous
estimate substitutes the gradient.

3 It could also be improved using Nesterov or Quasi-Newton
principles.
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Parallel settings
BCD can be applied in different settings:

1 Cyclic rule: the block coordinates are chosen cyclically, in a
sequential manner. This scheme is frequently referred to as
Gauss-Seidel scheme.

2 Parallel rule: all blocks are updated based on the same
approximation point xk. This scheme is frequently referred
to as the Jacobi scheme.

3 Mixed scheme: for big data, it is useful that some blocks
are updated in parallel (in different processors) while the
variables of each block are updated sequentially (within the
same processor). This scheme is usually referred to as
Gauss-Jacobi scheme.

4 Randomized rule: In the randomized scheme, every block
has a non-zero probability of being updated, and these
probabilities are varied according to some information over
the estimated errors.
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case_study_6_1
Let us assume the general problem

argmin
w

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

Instead of updating one single variable at a time, we can make
blocks of variables of size mj ≥ 1 and solve the problem in a
parallel fashion.

The gradient takes the same form as before, but the j represents
a block of variables:

∇jf(w) =
2

n
XT

:,j(X:,jwj +X:,−jw−j − y) + λwj = 0

So, the closed-form solution for the iteration k + 1 results into

wk+1,j =
(
XT

:,jX:,j +
n

2
λImj

)−1
XT

:,j (y −X:,−jwk,−j)
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Case_study_6_1

Follow the code provided in the notebook Case_study_6_1 to
obtain results as those presented in the next Figure. Pay
attention to how high-speed these algorithms are.
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Case_study_6_2

Let’s now consider the LASSO case

argmin
w

1

n
∥Xw − y∥22 + λ ∥w∥1

By differentiating it with respect to j-th weight, we get

∇jf(w) =
2

n
XT

:,j (X:,jwj +X:,−jw−j − y) + λ∂|wj | ∈ 0

Solving for wj

wj =
XT

:,j (y −X:,−jw−j)

XT
:,jX:,j

− nλsgn(wj)

2XT
:,jX:,j
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Case_study_6_2

Follow the code provided in the notebook Case_study_6_2 to
obtain the following results
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Questions?
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