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What is mathematical optimization?

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [3].

So typically we are given a problem like the following:
ẑ = argmax

z
f(z) s.t. g(z) < a (1)

■ f(·) function subject to optimization.
■ z ∈ Z variables/parameters that need to be adjusted.
■ Z is the search space. ẑ is the optimum.
■ g(·) restrictions. f |G , where G ⊆ Z; G is the feasible set.
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ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a model f(·) that
performs the mapping f : X → R,

and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
N
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!
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What about the hyperparameters?
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Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?

■ Evaluation cost: Evaluating the function that we wish to
maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.
■ Variable types: There are a mixture of discrete variables

and continuous variables.
■ Noise: The function may return different values for the

same input hyperparameter set.
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A typical case

Take decisions under uncertainty maximizing rewards.
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One alternative

Bayesian optimization is a framework that can deal with
optimization problems with all the listed challenges.

BO builds a cheaper surrogate model for the true objective; it
includes both our current estimate of that function and the
uncertainty around that estimate. By considering this model,
we can choose where next to sample the function.
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Active learning

Let’s consider the following example:

Figure: Example of active learning problem

What locations should f(x) be sampled at in order to
approximate it properly?
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Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?

The most common criterion for input space exploring in active
learning is uncertainty reduction.

xs = argmax
x∈X

V[fθ(x)] (3)

The former criterion requires fθ(·) to provide not only a
prediction value y but an uncertanty estimation over such
prediction, let’s call it σ(y).
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Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters θ. In other words, the parameters θ are
random variables as well.

A prior distribution over the parameters, p(θ) encodes our
initial beliefs.

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(4)
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Bayesian models...

If θ is high dimensional then computing integrals could be quite
challenging, so when possible p(θ) is chosen to be a conjugate
distribution of p(D|θ).

The predictive distribution can be written in the form:

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ (5)

Thus, we end up with a posterior distribution instead of a point
estimate. The most probable output for an input x∗ will be the
expected value of the distribution, i.e. its mean, and its variance
provides an uncertainty measure about the prediction.
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Gaussian Processes

A Gaussian Processes (GPs) is defined as a probability
distribution over functions f(x) such that the set of values of
f(x) evaluated at an arbitrary set of points x1, ...,xN jointly
have a Gaussian distribution [1].

Since we assume that the observations are jointly Gaussian:
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Gaussian Processes...

A GP is completely specified by its mean function and
covariance function [5].

m(x) = E[f(x)]
k(x,x′) = E[(f(x)−m(x))(f(x′))−m(x′))]
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Gaussian Process...

The GP is written as:

f(x) ∼ GP(m(x), k(x,x′)) (6)

Assuming there is noise in the measurements, the joint
distribution for new samples X∗:[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(7)

So, the conditional distribution f∗|X,y,X∗ is straightforward
[5]:

f̄∗ = K(X∗,X)[K(X,X) + σ2I]−1y (8)
cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗)
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Gaussian Process hyperparameter learning

The hyperparameters of the model can be estimated by
maximizing the marginal likelihood:

p(y|X) =

∫
p(y|f , X)p(f |X)df (9)

Under the GP model the prior is Gaussian, f |X ∼ N (0,K) and
the likelihood is a factorized Gaussian y|f ∼ N (f |σ2I), therefore:

log p(y|X) = −1

2
yT (K+σ2I)y− 1

2
log |K+σ2I|−N

2
log 2π (10)
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Gaussian Process Regression examples
The prior:

Figure: Samples from the GP
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Gaussian Process Regression examples
The posterior predictive distribution (noise free):

Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples
The posterior predictive distribution (with noise):

Figure: Predictive distribution of the GP regressor
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Effect of Kernel hyperparameters

Figure: kernel effects in the posterior distribution
k(xi,xj) = σf

2 exp(− 1
2l2 (xi − xj)

T (xi − xj)).
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Effect of Kernel hyperparameters in 2D

Figure: Mean function in higher dimension
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Samples from different kernels

Figure: Samples from GPs with different covariances
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Back to the Active learning problem

Figure: Active learning iterations
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Bayesian optimization

If the function evaluation of f(·) is expensive, how to guide the
search for the optimum in a minimum number of steps?

In essence, Bayesian optimization tackle a similar problem than
active learning, however, optimization problems require a
balance between exploration and exploitation.

■ Exploitation means sampling where the surrogate model
predicts a high objective.

■ Exploration means sampling at locations where the
prediction uncertainty is high.

In active learning, such a search was controlled only by
uncertainty. In Bayesian optimization, instead, proposing
sampling points in the search space is done by acquisition
functions. They trade off exploitation and exploration.
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Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.
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Acquisition functions

There are several proposed acquisition functions, a simple one is
probability of improvement, which chooses the next query point
as the one which has the highest probability of improvement
over the current max f(x+). Formally:

xt = argmax
x

P (f(x) ≥ (f(x+) + ϵ)) (12)

If we are using a GP as a surrogate the expression above
converts to,

xt = argmax
x

Φ

(
µ(x)− f(x+)− ϵ

σ(x)

)
(13)

where µ(x) and σ(x) are the mean and variance of the posterior
distribution at x respectively, and Φ(·) indicates the CDF.
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PI example

Let’s consider the same objective function than before:

Figure: Example of a bayesian optimization problem

Take into account that in this case, the aim is to find the
minimum of the function.



73 / 105

PI example...

xt = argmax
x

Φ

(
µ(x)− f(x+)− ϵ

σ(x)

)

Figure: Interpretation of PI acquisition function
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PI example...

Figure: Bayesian optimization iterations using PI
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Expected improvement
The probability of improvement only looked at how likely an
improvement is but did not consider how much we can improve.
The next criterion, called Expected Improvement (EI), does
exactly that!

The idea is to choose the next query point as the one which has
the highest expected improvement over the current max f(x+),
where x+ = argmaxxi∈x1:t−1 f(xi) and xi is the location queried
at ith time step.

Expected improvement is defined as
EI(x)=E[max((f(x)− f(x+), 0)]

EI(x)=
∫ µ(x)−f(x+)

σ(x)

−∞
(µ(x)− f(x+)− σ(x)ε)ϕ(ε)dε
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Expected improvement...

The expected improvement can be evaluated analytically under
the GP [4]:

EI(x) =

{
(µ(x)− f(x+)− ϵ)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

(14)
where

Z =

{
µ(x)−f(x+)−ϵ

σ(x) if σ(x) > 0

0 if σ(x) = 0
(15)

Φ and ϕ are the CDF and PDF of the standard normal
distribution, respectively.
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EI example

Figure: Bayesian optimization iterations using EI
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Hyperparameter tuning with Bayesian optimization
Let’s consider the problem of tuning the hyperparameters of a
XGBoost model to predict diabetes.

Figure: Hyperparameter tuning using Bayesian Optimization



98 / 105

Financial and trading applications
BO tackles the same problem as in Multi-Armed Bandits.

The GP_UCB (Upper Confidence Bound) is equivalent to the
minimisation of the cumulative regret.

It could also be extended to contexts where the objective
function is time-dependent.
k({xi, ti}, {xj , tj}) = kGabor(ti, tj)× kLinear(xi,xj).

Figure: Bayesian optimization in finance
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Agro-industrial applications

Figure: Bayesian optimization in precision agriculture. First image
taken from [6]
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Bayesian optimization libraries

■ Scikit-optimize.
■ pyGPGO
■ KerasTuner
■ RAY Tune
■ GPflowOpt
■ Trieste
■ GPyTorch
■ Botorch
■ Dragonfly
■ Vizier
■ GPyOpt is a Bayesian optimization library based on GPy.

No longer supported.
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Further readings

■ Other acquisition functions: Entropy search, Predictive
entropy search, Thomson sampling, Monte Carlo
acquisition functions, etc.

■ Parallel (Batch) Bayesian optimization.
■ Multi-objective Bayesian optimization.
■ Optimization over non-Euclidean spaces.
■ Restrictions: known and unknown
■ Causal Bayesian optimization
■ Several parts of this presentation were based on the

outstanding tutorial by Martin Krasser available on:
http://krasserm.github.io/2018/03/21/bayesian-
optimization/
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Questions?
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