sm A ’ \ A DEPARTAMENTO DE SENALES, SISTEMAS Y RADIOCOMUNICACIONES ‘ ji N

Optimization Techniques for Big Data Analysis

Chapter 9. Introduction to Bayesian Optimisation

Master of Science in Signal Theory and Communications
Dpto. de Senales, Sistemas y Radiocomunicaciones
E.T.S. Ingenieros de Telecomunicacion
Universidad Politécnica de Madrid

2023



@ Context
Mathematical optimization
Non conventional optimization problems

® Optimization under uncertainty
Active learning
Bayesian learning

® Bayesian optimization
Basic algorithm
Acquisition functions

O Applications
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What is mathematical optimization?

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [3].

, =
\ 7 IR

N ‘
,, \ '

2




What is mathematical optimization?

/%
’////I"'

X
0

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [3].

ey IS
K
SRR
SRR
ez -\

So typically we are given a problem like the following:
z=argmax [(z) s.t. g(2) <a (1)
B /(-) function subject to f)ptimization.
B : € Z variables/parameters that need to be adjusted.
B Z is the search space. Z is the optimum.
B g(.) restrictions. f|g, where G C Z; G is the feasible set.
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ML set-up
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ML set-up

A typical ML task can be seen like:

X Yy

— [x) |/

where x € X C R?: so we want to find a model f(-) that
performs the mapping [/ : X — R, and often we assume that:

y=fo(x)+& e~N(0,0? (2)
Using a dataset D = {(x;, ;) } and some criterion .J(6) we
approximate f(-). This allow us to make predictions of y* given

anew x".
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ML set-up

A typical ML task can be seen like:

X » Yy

— (%) |/

where x € X C R?: so we want to find a model f(-) that
performs the mapping [/ : X — R, and often we assume that:
y=rfolx)+& &~N(0,%) (2)

Using a dataset D = {(x;, ;) } and some criterion .J(6) we
approximate [(-). This allow us to make predictions of y* given
a new x'.

Training f¢(-) corresponds to the optimization of .J(6)!
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What about the hyperparameters?
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What about the hyperparameters?

run optimize()

L

Hyperparameters Parameters Score
n_layers = 3 e—  Weights

Q n_neurons = 512 = optimization #
learning_rate = 0.1
n_layers = 3 )

Q n_neurons = 1024 # :—E Evp[-t!ilrgnri‘;zti on # 80%
learning_rate = 0.01
n_layers =5 )

Q n_neurons = 256 # :—E Evp[-t!ilrgnri‘;zti on # 92%
learning rate = 0.1



What about the hyperparameters?
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Model Parameters

What about the hyperparameters?

Hyperparameters

n_iter

test_size max_depth

random_state .
- n_neighbors

alpha
¢ N  gamma

n_components
metric

kernel
n_folds

penalty ¢y




What about the hyperparameters?

config:Ir_decay.value config:category.value config:Ir.value summary:iou
1 0.30 0.
0.035 109
9
0.030
8
0.025 2
0.020 ] : 6
0.015] 57
0.010
0.005
0.000 -
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Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
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Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?

B Evaluation cost: Evaluating the function that we wish to
maximize (i.e., the network performance) in
hyperparameter search is very expensive.

B Multiple local optima: The function is not convex.

B No derivatives: We do not have access to the function’s
gradient with respect to the hyperparameters.

B Variable types: There are a mixture of discrete variables
and continuous variables.

B Noise: The function may return different values for the
same input hyperparameter set.



A typical case

Take decisions under uncertainty maximizing rewards.
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A typical case

Take decisions under uncertainty maximizing rewards.

Multi-Armed Bandits

Increasingly successful in various practical settings where these challenges occur
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One alternative

Bayesian optimization is a framework that can deal with
optimization problems with all the listed challenges.
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One alternative

Bayesian optimization is a framework that can deal with
optimization problems with all the listed challenges.

BO builds a cheaper surrogate model for the true objective; it
includes both our current estimate of that function and the
uncertainty around that estimate. By considering this model,
we can choose where next to sample the function.
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Active learning

Let’s consider the following example:

-- Objetive function s 2
Noisy samples ML o
= Initial samples AT

Figure: Example of active learning problem

What locations should f(x) be sampled at in order to
approximate it properly?
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Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?
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Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?

The most common criterion for input space exploring in active
learning is uncertainty reduction.

xs = arg max V|fy(x)] (3)

The former criterion requires fy(-) to provide not only a
prediction value y but an uncertanty estimation over such
prediction, let’s call it o(y).
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Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).



Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters 6. In other words, the parameters 0 are
random variables as well.

A prior distribution over the parameters, p(f) encodes our
initial beliefs.

p(D[0)p(0)

p(0|D) = (D)
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Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters 6. In other words, the parameters 0 are
random variables as well.

A prior distribution over the parameters, p(f) encodes our
initial beliefs.

p(D0)p(0) _  p(D|0)p(0)

PO ===y = TaD0)p(0)d0
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Bayesian models...

If 0 is high dimensional then computing integrals could be quite
challenging, so when possible p(6) is chosen to be a conjugate
distribution of p(D|#).

The predictive distribution can be written in the form:

p(07 D) = [ ol p(OID) o (5)
Thus, we end up with a posterior distribution instead of a point
estimate. The most probable output for an input x* will be the

expected value of the distribution, i.e. its mean, and its variance
provides an uncertainty measure about the prediction.
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Gaussian Processes

A Gaussian Processes (GPs) is defined as a probability
distribution over functions f(x) such that the set of values of
f(x) evaluated at an arbitrary set of points xj, ..., x jointly
have a Gaussian distribution [1].



Gaussian Processes

A Gaussian Processes (GPs) is defined as a probability
distribution over functions f(x) such that the set of values of
f(x) evaluated at an arbitrary set of points x1, ..., Xy jointly
have a Gaussian distribution [1].

Since we assume that the observations are jointly Gaussian:

Partitioned Gaussians

Given a joint Gaussian distribution A/(x|g, ) with A = £ and

() ()



Gaussian Processes...

_ Eau Eab _ A!IG» Aab
¥ = (Ebu be) » A= (Aba Abb) '

Conditional distribution:

p(Xalxp) = N(X[pgp, AL
Pap = Ha— A Aas(xy — ).

Marginal distribution:

p(xﬂ) :N(Xa“-fa« Ecm)A

A GP is completely specified by its mean function and
covariance function [5].
nix) = E[f(x)]
o k) = E[G0 —mlx)(/(x) = m(x)]



Gaussian Process...

The GP is written as:
f(x) ~ GP(m(x), k(x,x")) (6)

Assuming there is noise in the measurements, the joint
distribution for new samples X*:

y K(X,X) 4021 K(X,X*)
P ) o

So, the conditional distribution f*|X,y, X* is straightforward

[5]:

f* = K(X*X)[K(X,X)+ Ty (8)
cov(f*) = K(X* X*)— K(X*X)[K(X,X) + oI K (X, X*)
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Gaussian Process hyperparameter learning

The hyperparameters of the model can be estimated by
maximizing the marginal likelihood:

P(y1X) = / p(y|f, X)p(E|X)ds (9)

Under the GP model the prior is Gaussian, f|X ~ AN(0, i) and
the likelihood is a factorized Gaussian y|f ~ N(f|o2I), therefore:

1 1 N
log p(y[X) = —5y" (K +0™ D)y — log | +0I|——-log 27 (10)
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Gaussian Process Regression examples

The prior:
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Figure: Samples from the GP




Gaussian Process Regression examples
The prior:
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Gaussian Process Regression examples

The prior:
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Figure: Samples from the GP



Gaussian Process Regression examples

The posterior predictive distribution (noise free):
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Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples

The posterior predictive distribution (noise free):
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Figure: Predictive distribution of the GP regressor



Gaussian Process Regression examples

The posterior predictive distribution (noise free):
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Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples

The posterior predictive distribution (noise free):

24 —— Mean
---- Sample 1
---- Sample 2

14 ’/,\\ . ---- Sample 3

Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples

The posterior predictive distribution (with noise):
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Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples

The posterior predictive distribution (with noise):
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Gaussian Process Regression examples

The posterior predictive distribution (with noise):

24 —— Mean
---- Sample 1
---- Sample 2
11 ---- Sample 3
0 -
_1 -
_2 -

Figure: Predictive distribution of the GP regressor
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Gaussian Process Regression examples

The posterior predictive distribution (with noise):
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Figure: Predictive distribution of the GP regressor
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Effect of Kernel hyperparameters

ma_f igma = 3.0, sigma_f = 1.0, sigma_y = 0.2
— ean — mean
25 ors x
20 050
s 025
10 b 000
08 025
00 -050
-0s ors
10
v 2 I 3 7 R
ma_f igma 1= 1.0, sigma_f = 1.0, sigma_y = 0.05

Figure: kernel effects in the posterior distribution
Fxi,%;) = 0p% exp(— gz (% — %) 7 (% — %;)).-
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Effect of Kernel hyperparameters

—— Mean
1.0
X
X
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Figure: kernel effects in the posterior distribution
k(x,x5) = 0’f2 eXp(—ﬁ(xi — xj)T(xi - x5)).
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Effect of Kernel hyperparameters in 2D

Before parameter optimization: 1=1.0 sigma_f=1.0 After parameter optimization: 1=2.56 sigma_f=0.62

Figure: Mean function in higher dimension



Samples from different kernels

kernel = RBF

Kernel = Matern

kernel =

— Mean
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s .
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~ee- omple 3

Figure: Samples from GPs with different covariances



Back to the Active learning problem

Iteration 1

25 Noise free objecyive function
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 2
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 3

-2.0 -15 -1.0 =05 0.0 0.5 1.0 15 2.0
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 4
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 5
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 6

Figure: Active learning iterations



Back to the Active learning problem

Iteration 7
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 8

Figure: Active learning iterations



Back to the Active learning problem

Iteration 9
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Figure: Active learning iterations



Back to the Active learning problem

Iteration 10

Figure: Active learning iterations



Back to the Active learning problem

Iteration 11
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search for the optimum in a minimum number of steps?
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Bayesian optimization

If the function evaluation of [(-) is expensive, how to guide the
search for the optimum in a minimum number of steps?

In essence, Bayesian optimization tackle a similar problem than
active learning, however, optimization problems require a
balance between exploration and exploitation.

B Exploitation means sampling where the surrogate model
predicts a high objective.

B Exploration means sampling at locations where the
prediction uncertainty is high.

In active learning, such a search was controlled only by
uncertainty. In Bayesian optimization, instead, proposing
sampling points in the search space is done by acquisition
functions. They trade off exploitation and exploration.
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Optimization algorithm

In order to find:

Xmazxr = arg Ip?ea))(( J(x) (11)

The Bayesian optimization procedure is as follows. For
t=1,2,... repeat [2]:
® Find the next sampling point x; by optimizing the
acquisition function over the GP: x; = argmax, o(x;Z;_1)
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Optimization algorithm

In order to find:

Xmazxr = arg I)Tclea/{f J(x) (11)

The Bayesian optimization procedure is as follows. For
t=1,2,... repeat [2]:
® Find the next sampling point x; by optimizing the
acquisition function over the GP: x; = argmax, a(x;Z;—1)

® Obtain a possibly noisy sample y; = f(x¢) + &; from the
objective function f.

® Add the sample to previous samples
Dyt = {D1.4—1, (x¢,y¢)} and update the GP.
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Optimization algorithm

In order to find:

Xmazxr = arg Ip?ea))(( J(x) (11)

The Bayesian optimization procedure is as follows. For
t=1,2,... repeat [2]:
® Find the next sampling point x; by optimizing the
acquisition function over the GP: x; = argmax, a(x;Z¢_1)
® Obtain a possibly noisy sample y; = f(x;) + &; from the
objective function f.

® Add the sample to previous samples
Dyt = {D1.4-1, (x¢,4¢)} and update the GP.

where 7;_1 represents the available data set Dy.;—1 and the GP
structure (kernel, likelihood and parameter values) at ¢t — 1 step.
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Acquisition functions

There are several proposed acquisition functions, a simple one is
probability of improvement, which chooses the next query point
as the one which has the highest probability of improvement
over the current max f(x"). Formally:

X; = arg max P(f(x) > (f(xT)+e) (12)

If we are using a GP as a surrogate the expression above
converts to,

) - J) - "

Xy = arg max ¢ (
x o(x)

where //(x) and o(x) are the mean and variance of the posterior
distribution at x respectively, and ®(-) indicates the CDF.
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PI example

Let’s consider the same objective function than before:

Figure: Example of a bayesian optimization problem

Take into account that in this case, the aim is to find the
minimum of the function.
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PI example...

p(x) = f(x*) —6>

x; = argmax @ (
x o(x)

2.5
2.0
15 0.3

1.0
0.5 /\ \ 0.2
0.0 = = e

K 0.1
-0.5 / —— Acquisition function
-1.0 0.0 ---- Next sample location

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0 -20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Figure: Interpretation of PI acquisition function



PI example...

Iteration 1
3
Noise free objecyive function
—— Surrogate function

2 % Noisy samples
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0 s
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Figure: Bayesian optimization iterations using PI
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PI example...

Iteration 2

-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
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Figure: Bayesian optimization iterations using PI
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PI example...

Iteration 3
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Figure: Bayesian optimization iterations using PI
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PI example...

Iteration 4
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PI example...

Iteration 5
3
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Figure: Bayesian optimization iterations using PI
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PI example...

Iteration 6
e -
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Figure: Bayesian optimization iterations using PI



PI example...

Iteration 7
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PI example...

Iteration 8

—— Acquisition function € = 0.07
—— Acquisition function £ = 0.3
-=--- Next sample location




PI example...

Iteration 9
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Figure: Bayesian optimization iterations using PI
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PI example...

Iteration 10
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Figure: Bayesian optimization iterations using PI



Expected improvement

The probability of improvement only looked at how likely an
improvement is but did not consider how much we can improve.
The next criterion, called Expected Improvement (EI), does
exactly that!



Expected improvement

The probability of improvement only looked at how likely an
improvement is but did not consider how much we can improve.
The next criterion, called Expected Improvement (EI), does
exactly that!

The idea is to choose the next query point as the one which has
the highest expected improvement over the current max f(x™),

where xT = arg maxx,ex,., ; /(Xi) and x; is the location queried
at 7" time step.

Expected improvement is defined as
El(x)=E[max((f(x) — f(x7),0)]

//(xif/!x+§

B [T (0 — 1) o (x)e) ole)ie
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Expected improvement...

The expected improvement can be evaluated analytically under
the GP [4]:

El(x) = {(/1(X> — [(xT) = €)®(2) + o(x)p(Z) if o(x) >0

0 if o(x)=0
(14)
where
px)=f(xt)—e .
s =5 iox)>0 1)
0 if o(x) =0

® and ¢ are the CDF and PDF of the standard normal
distribution, respectively.
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EI example

Iteration 1
3
Noise free objecyive function
—— Surrogate function
2 % Noisy samples
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 2
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 3
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 4
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Figure: Bayesian optimization iterations using EI



EI example

Iteration 5
3
24
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Figure: Bayesian optimization iterations using EI



EI example

Iteration 6
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 7
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 8
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Figure: Bayesian optimization iterations using EI

55 /\n



EI example

Iteration 9
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Figure: Bayesian optimization iterations using EI
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EI example

Iteration 10
3
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Figure: Bayesian optimization iterations using EI
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Hyperparameter tuning with Bayesian optimization

Let’s consider the problem of tuning the hyperparameters of a
XGBoost model to predict diabetes.

Value of the best sampled CV score
—3000

—3250 A

—3500 A

—3750 A

—4000 ~

Neg. MSE

—4250 -

—4500 A

—4750 —8— Random search
—&— Bayesian optimization

—5000

0 5 10 15 20 25
Iteration

eop N\  Figure: Hyperparameter tuning using Bayesian Optimization



Financial and trading applications
BO tackles the same problem as in Multi-Armed Bandits.

The GP_UCB (Upper Confidence Bound) is equivalent to the
minimisation of the cumulative regret.

It could also be extended to contexts where the objective
function is time-dependent.

k‘({Xi, tl}a {Xj> t]}) = kGabor(tia t]) X kLinear(Xivxj)'

Adaptive Bayesian Optimisation for
Online Portfolio Selection

Favour M. Nyikosa, Michael A. Osborne and Stephen J. Roberts
Department of Engineering Science
University of Oxford
{favour,mosb, sjrob}@robots.ox.ac.uk

ﬂ%’ﬂ—’\/\/L Figure: Bayesian optimization in finance



Agro-industrial applications

DRIVERS OF PHENOTYPE DEVELOPMENT

/1’/3/7
- %,
% & Genome Nutrition @/)
7
& ~
& Fetal epigenome Caregivers behavior 25
& %
Transcriptome Mixing of pigs v
Post-natal Age at weaning
epigenome ~
=7
-
Temperature . 8
< Microbiorne
2 Relative humidity o &
oY Antimicrobials <
(;)/ Indoor/outdoor access ;{ §
< Pathogens e
2. Pigs per pen N
7, (density) <&
", @
S e
W
STAGES OF PHENOTYPE DEVELOPMENT
L, Conception Gestation Birth Lactation Rearing  _
genetics immunity, health, well being, growth and production

Figure: Bayesian optimization in precision agriculture. First image
taken from [6]



Agro-industrial applications

Nikitin et al. Plant Methods  (2019) 15:43
https:/doi.org/10.1186/513007-019-0422-2 Plant Methods

. . . . . ®
Bayesian optimization for seed germination =

Artyom Nikitin'"®, llia Fastovets'2, Dmitrii Shadrin', Mariia Pukalchik' and Ivan Oseledets

Figure: Bayesian optimization in precision agriculture. First image
taken from [6]
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Bayesian optimization libraries

Scikit-optimize.
pyGPGO
KerasTuner

RAY Tune
GPflowOpt

Trieste

GPyTorch

Botorch

Dragonfly

Vizier

GPyOpt is a Bayesian optimization library based on GPy.
No longer supported.



Further readings

Other acquisition functions: Entropy search, Predictive
entropy search, Thomson sampling, Monte Carlo
acquisition functions, etc.

Parallel (Batch) Bayesian optimization.
Multi-objective Bayesian optimization.
Optimization over non-Euclidean spaces.
Restrictions: known and unknown

Causal Bayesian optimization

Several parts of this presentation were based on the
outstanding tutorial by Martin Krasser available on:

http://krasserm.github.io/2018/03 /21 /bayesian-
optimization/



Questions?



(1]
2]

3]
[4]

[5]

[6]
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Thank You

Julian D. Arias-Londono
julian.arias@upm.es
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