
SSR
DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES

1 / 105

Optimization Techniques for Big Data Analysis

Chapter 9. Introduction to Bayesian Optimisation

Master of Science in Signal Theory and Communications
Dpto. de Señales, Sistemas y Radiocomunicaciones

E.T.S. Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

2023

2 / 105

1 Context
Mathematical optimization
Non conventional optimization problems

2 Optimization under uncertainty
Active learning
Bayesian learning

3 Bayesian optimization
Basic algorithm
Acquisition functions

4 Applications

3 / 105

What is mathematical optimization?

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [3].

So typically we are given a problem like the following:
ẑ = argmax

z
f(z) s.t. g(z) < a (1)

■ f(·) function subject to optimization.
■ z ∈ Z variables/parameters that need to be adjusted.
■ Z is the search space. ẑ is the optimum.
■ g(·) restrictions. f |G , where G ⊆ Z; G is the feasible set.

4 / 105

What is mathematical optimization?

“The selection of the best
element, with regard to some
criterion, from some set of
available alternatives” [3].

So typically we are given a problem like the following:
ẑ = argmax

z
f(z) s.t. g(z) < a (1)

■ f(·) function subject to optimization.
■ z ∈ Z variables/parameters that need to be adjusted.
■ Z is the search space. ẑ is the optimum.
■ g(·) restrictions. f |G , where G ⊆ Z; G is the feasible set.

5 / 105

ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a model f(·) that
performs the mapping f : X → R,

and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
N
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!

6 / 105

ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a model f(·) that
performs the mapping f : X → R, and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
N
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!

7 / 105

ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a model f(·) that
performs the mapping f : X → R, and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
N
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!

8 / 105

ML set-up

A typical ML task can be seen like:

f(x)
x y

where x ∈ X ⊆ Rd; so we want to find a model f(·) that
performs the mapping f : X → R, and often we assume that:

y = fθ(x) + ε; ε ∼ N (0, σ2) (2)

Using a dataset D = {(xi, yi)
N
i=1} and some criterion J(θ) we

approximate f(·). This allow us to make predictions of y∗ given
a new x∗.

Training fθ(·) corresponds to the optimization of J(θ)!

9 / 105

What about the hyperparameters?

10 / 105

What about the hyperparameters?

11 / 105

What about the hyperparameters?

12 / 105

What about the hyperparameters?

13 / 105

What about the hyperparameters?

14 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?

■ Evaluation cost: Evaluating the function that we wish to
maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.
■ Variable types: There are a mixture of discrete variables

and continuous variables.
■ Noise: The function may return different values for the

same input hyperparameter set.

15 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
■ Evaluation cost: Evaluating the function that we wish to

maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.
■ Variable types: There are a mixture of discrete variables

and continuous variables.
■ Noise: The function may return different values for the

same input hyperparameter set.

16 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
■ Evaluation cost: Evaluating the function that we wish to

maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.

■ No derivatives: We do not have access to the function’s
gradient with respect to the hyperparameters.

■ Variable types: There are a mixture of discrete variables
and continuous variables.

■ Noise: The function may return different values for the
same input hyperparameter set.

17 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
■ Evaluation cost: Evaluating the function that we wish to

maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.

■ Variable types: There are a mixture of discrete variables
and continuous variables.

■ Noise: The function may return different values for the
same input hyperparameter set.

18 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
■ Evaluation cost: Evaluating the function that we wish to

maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.
■ Variable types: There are a mixture of discrete variables

and continuous variables.

■ Noise: The function may return different values for the
same input hyperparameter set.

19 / 105

Hyperparameters tuning as optimization problem

Why is it difficult to tune hyperparameters?
■ Evaluation cost: Evaluating the function that we wish to

maximize (i.e., the network performance) in
hyperparameter search is very expensive.

■ Multiple local optima: The function is not convex.
■ No derivatives: We do not have access to the function’s

gradient with respect to the hyperparameters.
■ Variable types: There are a mixture of discrete variables

and continuous variables.
■ Noise: The function may return different values for the

same input hyperparameter set.

20 / 105

A typical case

Take decisions under uncertainty maximizing rewards.

21 / 105

A typical case

Take decisions under uncertainty maximizing rewards.

22 / 105

One alternative

Bayesian optimization is a framework that can deal with
optimization problems with all the listed challenges.

BO builds a cheaper surrogate model for the true objective; it
includes both our current estimate of that function and the
uncertainty around that estimate. By considering this model,
we can choose where next to sample the function.

23 / 105

One alternative

Bayesian optimization is a framework that can deal with
optimization problems with all the listed challenges.

BO builds a cheaper surrogate model for the true objective; it
includes both our current estimate of that function and the
uncertainty around that estimate. By considering this model,
we can choose where next to sample the function.

24 / 105

Active learning

Let’s consider the following example:

Figure: Example of active learning problem

What locations should f(x) be sampled at in order to
approximate it properly?

25 / 105

Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?

The most common criterion for input space exploring in active
learning is uncertainty reduction.

xs = argmax
x∈X

V[fθ(x)] (3)

The former criterion requires fθ(·) to provide not only a
prediction value y but an uncertanty estimation over such
prediction, let’s call it σ(y).

26 / 105

Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?

The most common criterion for input space exploring in active
learning is uncertainty reduction.

xs = argmax
x∈X

V[fθ(x)] (3)

The former criterion requires fθ(·) to provide not only a
prediction value y but an uncertanty estimation over such
prediction, let’s call it σ(y).

27 / 105

Active learning

Given a ML problem with a small set of labelled samples and a
large set of unlabelled samples, how to guide the labelling
process that is usually very time-consuming to enrich the
training dataset gradually?

The most common criterion for input space exploring in active
learning is uncertainty reduction.

xs = argmax
x∈X

V[fθ(x)] (3)

The former criterion requires fθ(·) to provide not only a
prediction value y but an uncertanty estimation over such
prediction, let’s call it σ(y).

28 / 105

Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters θ. In other words, the parameters θ are
random variables as well.

A prior distribution over the parameters, p(θ) encodes our
initial beliefs.

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(4)

29 / 105

Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters θ. In other words, the parameters θ are
random variables as well.

A prior distribution over the parameters, p(θ) encodes our
initial beliefs.

p(θ|D) =
p(D|θ)p(θ)

p(D)

=
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(4)

30 / 105

Bayesian models

Most common ML approaches follow a frequentist principle, i.e.
the learning criteria adjust the model parameters by maximizing
the likelihood function (e.g. MSE, cross-entropy).

In contrast to maximum likelihood learning, Bayesian learning
explicitly models uncertainty over both the observed variables x
and the parameters θ. In other words, the parameters θ are
random variables as well.

A prior distribution over the parameters, p(θ) encodes our
initial beliefs.

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(4)

31 / 105

Bayesian models...

If θ is high dimensional then computing integrals could be quite
challenging, so when possible p(θ) is chosen to be a conjugate
distribution of p(D|θ).

The predictive distribution can be written in the form:

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ (5)

Thus, we end up with a posterior distribution instead of a point
estimate. The most probable output for an input x∗ will be the
expected value of the distribution, i.e. its mean, and its variance
provides an uncertainty measure about the prediction.

32 / 105

Gaussian Processes

A Gaussian Processes (GPs) is defined as a probability
distribution over functions f(x) such that the set of values of
f(x) evaluated at an arbitrary set of points x1, ...,xN jointly
have a Gaussian distribution [1].

Since we assume that the observations are jointly Gaussian:

33 / 105

Gaussian Processes

A Gaussian Processes (GPs) is defined as a probability
distribution over functions f(x) such that the set of values of
f(x) evaluated at an arbitrary set of points x1, ...,xN jointly
have a Gaussian distribution [1].

Since we assume that the observations are jointly Gaussian:

34 / 105

Gaussian Processes...

A GP is completely specified by its mean function and
covariance function [5].

m(x) = E[f(x)]
k(x,x′) = E[(f(x)−m(x))(f(x′))−m(x′))]

35 / 105

Gaussian Process...

The GP is written as:

f(x) ∼ GP(m(x), k(x,x′)) (6)

Assuming there is noise in the measurements, the joint
distribution for new samples X∗:[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
(7)

So, the conditional distribution f∗|X,y,X∗ is straightforward
[5]:

f̄∗ = K(X∗,X)[K(X,X) + σ2I]−1y (8)
cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗)

36 / 105

Gaussian Process hyperparameter learning

The hyperparameters of the model can be estimated by
maximizing the marginal likelihood:

p(y|X) =

∫
p(y|f , X)p(f |X)df (9)

Under the GP model the prior is Gaussian, f |X ∼ N (0,K) and
the likelihood is a factorized Gaussian y|f ∼ N (f |σ2I), therefore:

log p(y|X) = −1

2
yT (K+σ2I)y− 1

2
log |K+σ2I|−N

2
log 2π (10)

37 / 105

Gaussian Process Regression examples
The prior:

Figure: Samples from the GP

38 / 105

Gaussian Process Regression examples
The prior:

Figure: Samples from the GP

39 / 105

Gaussian Process Regression examples
The prior:

Figure: Samples from the GP

40 / 105

Gaussian Process Regression examples
The posterior predictive distribution (noise free):

Figure: Predictive distribution of the GP regressor

41 / 105

Gaussian Process Regression examples
The posterior predictive distribution (noise free):

Figure: Predictive distribution of the GP regressor

42 / 105

Gaussian Process Regression examples
The posterior predictive distribution (noise free):

Figure: Predictive distribution of the GP regressor

43 / 105

Gaussian Process Regression examples
The posterior predictive distribution (noise free):

Figure: Predictive distribution of the GP regressor

44 / 105

Gaussian Process Regression examples
The posterior predictive distribution (with noise):

Figure: Predictive distribution of the GP regressor

45 / 105

Gaussian Process Regression examples
The posterior predictive distribution (with noise):

Figure: Predictive distribution of the GP regressor

46 / 105

Gaussian Process Regression examples
The posterior predictive distribution (with noise):

Figure: Predictive distribution of the GP regressor

47 / 105

Gaussian Process Regression examples
The posterior predictive distribution (with noise):

Figure: Predictive distribution of the GP regressor

48 / 105

Effect of Kernel hyperparameters

Figure: kernel effects in the posterior distribution
k(xi,xj) = σf

2 exp(− 1
2l2 (xi − xj)

T (xi − xj)).

49 / 105

Effect of Kernel hyperparameters

Figure: kernel effects in the posterior distribution
k(xi,xj) = σf

2 exp(− 1
2l2 (xi − xj)

T (xi − xj)).

50 / 105

Effect of Kernel hyperparameters in 2D

Figure: Mean function in higher dimension

51 / 105

Samples from different kernels

Figure: Samples from GPs with different covariances

52 / 105

Back to the Active learning problem

Figure: Active learning iterations

53 / 105

Back to the Active learning problem

Figure: Active learning iterations

54 / 105

Back to the Active learning problem

Figure: Active learning iterations

55 / 105

Back to the Active learning problem

Figure: Active learning iterations

56 / 105

Back to the Active learning problem

Figure: Active learning iterations

57 / 105

Back to the Active learning problem

Figure: Active learning iterations

58 / 105

Back to the Active learning problem

Figure: Active learning iterations

59 / 105

Back to the Active learning problem

Figure: Active learning iterations

60 / 105

Back to the Active learning problem

Figure: Active learning iterations

61 / 105

Back to the Active learning problem

Figure: Active learning iterations

62 / 105

Back to the Active learning problem

Figure: Active learning iterations

63 / 105

Bayesian optimization

If the function evaluation of f(·) is expensive, how to guide the
search for the optimum in a minimum number of steps?

In essence, Bayesian optimization tackle a similar problem than
active learning, however, optimization problems require a
balance between exploration and exploitation.

■ Exploitation means sampling where the surrogate model
predicts a high objective.

■ Exploration means sampling at locations where the
prediction uncertainty is high.

In active learning, such a search was controlled only by
uncertainty. In Bayesian optimization, instead, proposing
sampling points in the search space is done by acquisition
functions. They trade off exploitation and exploration.

64 / 105

Bayesian optimization

If the function evaluation of f(·) is expensive, how to guide the
search for the optimum in a minimum number of steps?

In essence, Bayesian optimization tackle a similar problem than
active learning, however, optimization problems require a
balance between exploration and exploitation.

■ Exploitation means sampling where the surrogate model
predicts a high objective.

■ Exploration means sampling at locations where the
prediction uncertainty is high.

In active learning, such a search was controlled only by
uncertainty. In Bayesian optimization, instead, proposing
sampling points in the search space is done by acquisition
functions. They trade off exploitation and exploration.

65 / 105

Bayesian optimization

If the function evaluation of f(·) is expensive, how to guide the
search for the optimum in a minimum number of steps?

In essence, Bayesian optimization tackle a similar problem than
active learning, however, optimization problems require a
balance between exploration and exploitation.

■ Exploitation means sampling where the surrogate model
predicts a high objective.

■ Exploration means sampling at locations where the
prediction uncertainty is high.

In active learning, such a search was controlled only by
uncertainty. In Bayesian optimization, instead, proposing
sampling points in the search space is done by acquisition
functions. They trade off exploitation and exploration.

66 / 105

Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.

67 / 105

Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.

68 / 105

Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.

69 / 105

Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.

70 / 105

Optimization algorithm

In order to find:
xmax = argmax

x∈X
f(x) (11)

The Bayesian optimization procedure is as follows. For
t = 1, 2, ... repeat [2]:

1 Find the next sampling point xt by optimizing the
acquisition function over the GP: xt = argmaxxα(x; It−1)

2 Obtain a possibly noisy sample yt = f(xt) + εt from the
objective function f .

3 Add the sample to previous samples
D1:t = {D1:t−1, (xt, yt)} and update the GP.

where It−1 represents the available data set D1:t−1 and the GP
structure (kernel, likelihood and parameter values) at t− 1 step.

71 / 105

Acquisition functions

There are several proposed acquisition functions, a simple one is
probability of improvement, which chooses the next query point
as the one which has the highest probability of improvement
over the current max f(x+). Formally:

xt = argmax
x

P (f(x) ≥ (f(x+) + ϵ)) (12)

If we are using a GP as a surrogate the expression above
converts to,

xt = argmax
x

Φ

(
µ(x)− f(x+)− ϵ

σ(x)

)
(13)

where µ(x) and σ(x) are the mean and variance of the posterior
distribution at x respectively, and Φ(·) indicates the CDF.

72 / 105

PI example

Let’s consider the same objective function than before:

Figure: Example of a bayesian optimization problem

Take into account that in this case, the aim is to find the
minimum of the function.

73 / 105

PI example...

xt = argmax
x

Φ

(
µ(x)− f(x+)− ϵ

σ(x)

)

Figure: Interpretation of PI acquisition function

74 / 105

PI example...

Figure: Bayesian optimization iterations using PI

75 / 105

PI example...

Figure: Bayesian optimization iterations using PI

76 / 105

PI example...

Figure: Bayesian optimization iterations using PI

77 / 105

PI example...

Figure: Bayesian optimization iterations using PI

78 / 105

PI example...

Figure: Bayesian optimization iterations using PI

79 / 105

PI example...

Figure: Bayesian optimization iterations using PI

80 / 105

PI example...

Figure: Bayesian optimization iterations using PI

81 / 105

PI example...

Figure: Bayesian optimization iterations using PI

82 / 105

PI example...

Figure: Bayesian optimization iterations using PI

83 / 105

PI example...

Figure: Bayesian optimization iterations using PI

84 / 105

Expected improvement
The probability of improvement only looked at how likely an
improvement is but did not consider how much we can improve.
The next criterion, called Expected Improvement (EI), does
exactly that!

The idea is to choose the next query point as the one which has
the highest expected improvement over the current max f(x+),
where x+ = argmaxxi∈x1:t−1 f(xi) and xi is the location queried
at ith time step.

Expected improvement is defined as
EI(x)=E[max((f(x)− f(x+), 0)]

EI(x)=
∫ µ(x)−f(x+)

σ(x)

−∞
(µ(x)− f(x+)− σ(x)ε)ϕ(ε)dε

85 / 105

Expected improvement
The probability of improvement only looked at how likely an
improvement is but did not consider how much we can improve.
The next criterion, called Expected Improvement (EI), does
exactly that!

The idea is to choose the next query point as the one which has
the highest expected improvement over the current max f(x+),
where x+ = argmaxxi∈x1:t−1 f(xi) and xi is the location queried
at ith time step.

Expected improvement is defined as
EI(x)=E[max((f(x)− f(x+), 0)]

EI(x)=
∫ µ(x)−f(x+)

σ(x)

−∞
(µ(x)− f(x+)− σ(x)ε)ϕ(ε)dε

86 / 105

Expected improvement...

The expected improvement can be evaluated analytically under
the GP [4]:

EI(x) =

{
(µ(x)− f(x+)− ϵ)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

(14)
where

Z =

{
µ(x)−f(x+)−ϵ

σ(x) if σ(x) > 0

0 if σ(x) = 0
(15)

Φ and ϕ are the CDF and PDF of the standard normal
distribution, respectively.

87 / 105

EI example

Figure: Bayesian optimization iterations using EI

88 / 105

EI example

Figure: Bayesian optimization iterations using EI

89 / 105

EI example

Figure: Bayesian optimization iterations using EI

90 / 105

EI example

Figure: Bayesian optimization iterations using EI

91 / 105

EI example

Figure: Bayesian optimization iterations using EI

92 / 105

EI example

Figure: Bayesian optimization iterations using EI

93 / 105

EI example

Figure: Bayesian optimization iterations using EI

94 / 105

EI example

Figure: Bayesian optimization iterations using EI

95 / 105

EI example

Figure: Bayesian optimization iterations using EI

96 / 105

EI example

Figure: Bayesian optimization iterations using EI

97 / 105

Hyperparameter tuning with Bayesian optimization
Let’s consider the problem of tuning the hyperparameters of a
XGBoost model to predict diabetes.

Figure: Hyperparameter tuning using Bayesian Optimization

98 / 105

Financial and trading applications
BO tackles the same problem as in Multi-Armed Bandits.

The GP_UCB (Upper Confidence Bound) is equivalent to the
minimisation of the cumulative regret.

It could also be extended to contexts where the objective
function is time-dependent.
k({xi, ti}, {xj , tj}) = kGabor(ti, tj)× kLinear(xi,xj).

Figure: Bayesian optimization in finance

99 / 105

Agro-industrial applications

Figure: Bayesian optimization in precision agriculture. First image
taken from [6]

100 / 105

Agro-industrial applications

Figure: Bayesian optimization in precision agriculture. First image
taken from [6]

101 / 105

Bayesian optimization libraries

■ Scikit-optimize.
■ pyGPGO
■ KerasTuner
■ RAY Tune
■ GPflowOpt
■ Trieste
■ GPyTorch
■ Botorch
■ Dragonfly
■ Vizier
■ GPyOpt is a Bayesian optimization library based on GPy.

No longer supported.

102 / 105

Further readings

■ Other acquisition functions: Entropy search, Predictive
entropy search, Thomson sampling, Monte Carlo
acquisition functions, etc.

■ Parallel (Batch) Bayesian optimization.
■ Multi-objective Bayesian optimization.
■ Optimization over non-Euclidean spaces.
■ Restrictions: known and unknown
■ Causal Bayesian optimization
■ Several parts of this presentation were based on the

outstanding tutorial by Martin Krasser available on:
http://krasserm.github.io/2018/03/21/bayesian-
optimization/

103 / 105

Questions?

104 / 105

References
[1] Christopher M. Bishop. Pattern Recognition and Machine

Learning. Springer, 2006.
[2] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on

Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical
reinforcement learning”. In: arXiv preprint arXiv:1012.2599
(2010).

[3] Melvyn W Jeter. Mathematical programming: an introduction to
optimization. Routledge, 2018.

[4] Donald R Jones, Matthias Schonlau, and William J Welch.
“Efficient global optimization of expensive black-box functions”.
In: Journal of Global optimization 13.4 (1998), pp. 455–492.

[5] Carl Edward Rasmussen and Christopher K Williams. Gaussian
processes for machine learning. Vol. 2. 3. MIT press Cambridge,
MA, 2006.

[6] Mohamed Zeineldin, Brian Aldridge, and James Lowe.
“Antimicrobial effects on swine gastrointestinal microbiota and
their accompanying antibiotic resistome”. In: Frontiers in
microbiology 10 (2019), p. 1035.

105 / 105

Thank You
Julián D. Arias-Londoño

julian.arias@upm.es

	Context
	Mathematical optimization
	Non conventional optimization problems

	Optimization under uncertainty
	Active learning
	Bayesian learning

	Bayesian optimization
	Basic algorithm
	Acquisition functions

	Applications
	References

