
SSR
DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES

1 / 96

Optimization Techniques for Big Data Analysis

Chapter 7. Augmented Lagrangian Methods

Master of Science in Signal Theory and Communications
Dpto. de Señales, Sistemas y Radiocomunicaciones

E.T.S. Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

2023

2 / 96

1 Motivation and precursors

2 Alternating Direction Method of Multipliers (ADMM)

3 Consensus ADMM
Consensus in fully connected networks

3 / 96

Motivation

This lecture is devoted to the method known as Alternating
Direction Method of Multipliers (ADMM), which applies
to linearly constrained problems (most Machine Learning
optimization problems can be expressed in this way).

This method represents a potent approach to solving machine
learning problems in both centralized and distributed
frameworks.

Before we get into the steps of the ADMM algorithm, we will
review the basic theory of constrained linear optimization.

4 / 96

Precursor 1. Lagrangian relaxation (1).

Let us define the following problem, which we will denote as
primal:

(P)

 min f (x)
s.t.:gi (x) ≤ 0 , i = 1, · · · ,m

hi (x) = 0 , i = 1, · · · , p


whose solution is going to be denoted as p∗: the value of x∗ that
minimizes f (x) while fulfilling the constraints.

A powerful optimization approach consists of defining a simpler
problem, called relaxation, solving it, and mapping this
solution into the original problem solution.

■ This is known as the dual problem (and its solution is
denoted as d∗).

■ Desirably, d∗ = p∗ in order to have an useful relaxation.

5 / 96

Precursor 1. Lagrangian relaxation (1).

Let us define the following problem, which we will denote as
primal:

(P)

 min f (x)
s.t.:gi (x) ≤ 0 , i = 1, · · · ,m

hi (x) = 0 , i = 1, · · · , p


whose solution is going to be denoted as p∗: the value of x∗ that
minimizes f (x) while fulfilling the constraints.

A powerful optimization approach consists of defining a simpler
problem, called relaxation, solving it, and mapping this
solution into the original problem solution.

■ This is known as the dual problem (and its solution is
denoted as d∗).

■ Desirably, d∗ = p∗ in order to have an useful relaxation.

6 / 96

Precursor 1. Lagrangian relaxation (2).
Lagrange proposed using as a relaxed problem the sum of the
original function and the weighted contribution of the
constraints: the Lagrangian:

L (x,β,α) = f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

where β ⪰ 0, αi ∈ R are Lagrangian multipliers.

We obtain the Lagrangian dual function:

L (β,α) = min
x

(
f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

)

whose principal property is that

L (β,α) ≤ p∗ ∀β ⪰ 0,α

7 / 96

Precursor 1. Lagrangian relaxation (2).
Lagrange proposed using as a relaxed problem the sum of the
original function and the weighted contribution of the
constraints: the Lagrangian:

L (x,β,α) = f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

where β ⪰ 0, αi ∈ R are Lagrangian multipliers.

We obtain the Lagrangian dual function:

L (β,α) = min
x

(
f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

)

whose principal property is that

L (β,α) ≤ p∗ ∀β ⪰ 0,α

8 / 96

Precursor 1. Lagrangian relaxation (3).

Hence, the Lagrange dual problem is

(D)

[
max
β,α

L (β,α)

s.t.:β ⪰ 0

]

■ The solution of the dual problem is d∗ = L (β∗,α∗) ≤ p∗.
▶ This property is known as weak duality.

▶ If all functions are convex (always in our Machine Learning
problems), we have the strong duality property, that is
d∗ = p∗, and hence, we can use this solution to obtain the
solution of (P).

9 / 96

Example 7.1
Let us study the following primal problem

(P)

[
min
x1,x2

(
x21 + x22 − 2x1

)
s.t.:x21 + x22 − 2x2 ≤ 0

]

a) Construct the Lagrangian relaxation

L (x1, x2, β) =
(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
b) Obtain the Lagrangian dual function

L (β) = min
x1,x2

(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
Taking derivatives, we have:

∂L (x1, x2, β)

∂x1
= 2x1 − 2 + 2βx1 = 0 → x∗1 =

1

1 + β

∂L (x1, x2, β)

∂x2
= 2x2 + β (2x2 − 2) = 0 → x∗2 =

β

1 + β

10 / 96

Example 7.1
Let us study the following primal problem

(P)

[
min
x1,x2

(
x21 + x22 − 2x1

)
s.t.:x21 + x22 − 2x2 ≤ 0

]
a) Construct the Lagrangian relaxation

L (x1, x2, β) =
(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)

b) Obtain the Lagrangian dual function

L (β) = min
x1,x2

(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
Taking derivatives, we have:

∂L (x1, x2, β)

∂x1
= 2x1 − 2 + 2βx1 = 0 → x∗1 =

1

1 + β

∂L (x1, x2, β)

∂x2
= 2x2 + β (2x2 − 2) = 0 → x∗2 =

β

1 + β

11 / 96

Example 7.1
Let us study the following primal problem

(P)

[
min
x1,x2

(
x21 + x22 − 2x1

)
s.t.:x21 + x22 − 2x2 ≤ 0

]
a) Construct the Lagrangian relaxation

L (x1, x2, β) =
(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
b) Obtain the Lagrangian dual function

L (β) = min
x1,x2

(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)

Taking derivatives, we have:

∂L (x1, x2, β)

∂x1
= 2x1 − 2 + 2βx1 = 0 → x∗1 =

1

1 + β

∂L (x1, x2, β)

∂x2
= 2x2 + β (2x2 − 2) = 0 → x∗2 =

β

1 + β

12 / 96

Example 7.1
Let us study the following primal problem

(P)

[
min
x1,x2

(
x21 + x22 − 2x1

)
s.t.:x21 + x22 − 2x2 ≤ 0

]
a) Construct the Lagrangian relaxation

L (x1, x2, β) =
(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
b) Obtain the Lagrangian dual function

L (β) = min
x1,x2

(
x21 + x22 − 2x1

)
+ β

(
x21 + x22 − 2x2

)
Taking derivatives, we have:

∂L (x1, x2, β)

∂x1
= 2x1 − 2 + 2βx1 = 0 → x∗1 =

1

1 + β

∂L (x1, x2, β)

∂x2
= 2x2 + β (2x2 − 2) = 0 → x∗2 =

β

1 + β

13 / 96

Example 7.1

Therefore we have

L (β) = L (x∗1, x
∗
2, β) = −1 + β2

1 + β

The maximum is L (β∗) =
−0.8284.

Let’s prove it!

14 / 96

Example 7.1

Therefore we have

L (β) = L (x∗1, x
∗
2, β) = −1 + β2

1 + β

The maximum is L (β∗) =
−0.8284.

Let’s prove it!

15 / 96

Example 7.1

c) Solve the Lagrange dual problem max
β≥0

L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:
β = −1±

√
2

16 / 96

Example 7.1

c) Solve the Lagrange dual problem max
β≥0

L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:
β = −1±

√
2

17 / 96

Example 7.1

c) Solve the Lagrange dual problem max
β≥0

L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:
β = −1±

√
2 → β∗ =

√
2− 1 > 0

18 / 96

Example 7.1

c) Solve the Lagrange dual problem max
β≥0

L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:

β = −1±
√
2 → β∗ =

√
2− 1 > 0 → L (β∗) = d∗ = −0.8284

19 / 96

Example 7.1

c) Solve the Lagrange dual problem max
β≥0

L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:

β = −1±
√
2 → β∗ =

√
2− 1 > 0 → L (β∗) = d∗ = −0.8284

d) Obtain the optimum solution of the primal variables

x∗1 =
1

1 + β∗ =
1√
2
, x∗2 =

β∗

1 + β∗ =

√
2− 1√
2

20 / 96

Example 7.1
c) Solve the Lagrange dual problem max

β≥0
L (β).

Taking derivatives

dL (β)

dβ
=

d

dβ

(
−1 + β2

1 + β

)
= 0

we obtain:

β = −1±
√
2 → β∗ =

√
2− 1 > 0 → L (β∗) = d∗ = −0.8284

d) Obtain the optimum solution of the primal variables

x∗1 =
1

1 + β∗ =
1√
2
, x∗2 =

β∗

1 + β∗ =

√
2− 1√
2

e) Calculate the optimum solution of the primal problem

p∗ = (x∗1)
2 + (x∗2)

2 − 2x∗1 = −0.8284

21 / 96

Precursor 2. Dual ascent (1).

This approach is advantageous when the solution of the dual
problem is not as easy to find as in the previous example, as it
relies on using gradient methods.

Starting again from the Lagrangian

L (x,β,α) = f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

If we assume that strict duality holds, we know that the optimal
values of the primal and dual problems are the same:

β∗,α∗ = argmax
β,α

L (x∗,β,α)

x∗ = argmin
x

L (x,β∗,α∗)

22 / 96

Precursor 2. Dual ascent (1).

This approach is advantageous when the solution of the dual
problem is not as easy to find as in the previous example, as it
relies on using gradient methods.

Starting again from the Lagrangian

L (x,β,α) = f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

If we assume that strict duality holds, we know that the optimal
values of the primal and dual problems are the same:

β∗,α∗ = argmax
β,α

L (x∗,β,α)

x∗ = argmin
x

L (x,β∗,α∗)

23 / 96

Precursor 2. Dual ascent (1).

This approach is advantageous when the solution of the dual
problem is not as easy to find as in the previous example, as it
relies on using gradient methods.

Starting again from the Lagrangian

L (x,β,α) = f (x) +

m∑
i=1

βigi (x) +

p∑
i=1

αihi (x)

If we assume that strict duality holds, we know that the optimal
values of the primal and dual problems are the same:

β∗,α∗ = argmax
β,α

L (x∗,β,α)

x∗ = argmin
x

L (x,β∗,α∗)

24 / 96

Precursor 2. Dual ascent (2).
The dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x, βk, αk)

βk+1, αk+1 = argmax
β,α

L (xk+1, β, α)

whose iterative implementation is:

xk+1 = xk − µk
∂L(x,βk,αk)

∂x

∣∣∣
x=xk

βk+1 = βk + γkmax

(
0,

∂L(xk+1,β,αk)
∂β

∣∣∣
β=βk

)
αk+1 = αk + γk

∂L(xk+1,βk+1,α)
∂α

∣∣∣
α=αk

With appropriate choice of γk:
■ The dual function increases in each step, i.e.,

L (xk+1, βk+1, αk+1) ≥ L (xk+1, βk, αk).
■ This method can also be used when L (x, β, y) is not

differentiable using the subgradient of L.

25 / 96

Precursor 2. Dual ascent (2).
The dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x, βk, αk)

βk+1, αk+1 = argmax
β,α

L (xk+1, β, α)

whose iterative implementation is:

xk+1 = xk − µk
∂L(x,βk,αk)

∂x

∣∣∣
x=xk

βk+1 = βk + γkmax

(
0,

∂L(xk+1,β,αk)
∂β

∣∣∣
β=βk

)
αk+1 = αk + γk

∂L(xk+1,βk+1,α)
∂α

∣∣∣
α=αk

With appropriate choice of γk:
■ The dual function increases in each step, i.e.,

L (xk+1, βk+1, αk+1) ≥ L (xk+1, βk, αk).
■ This method can also be used when L (x, β, y) is not

differentiable using the subgradient of L.

26 / 96

Precursor 2. Dual ascent (2).
The dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x, βk, αk)

βk+1, αk+1 = argmax
β,α

L (xk+1, β, α)

whose iterative implementation is:

xk+1 = xk − µk
∂L(x,βk,αk)

∂x

∣∣∣
x=xk

βk+1 = βk + γkmax

(
0,

∂L(xk+1,β,αk)
∂β

∣∣∣
β=βk

)
αk+1 = αk + γk

∂L(xk+1,βk+1,α)
∂α

∣∣∣
α=αk

With appropriate choice of γk:
■ The dual function increases in each step, i.e.,

L (xk+1, βk+1, αk+1) ≥ L (xk+1, βk, αk).
■ This method can also be used when L (x, β, y) is not

differentiable using the subgradient of L.

27 / 96

Example 7.2
Implement the dual ascent problem of Example 7.1 described
by the following iterations (per coordinate):

xk+1,1 = xk,1 − µ (2xk,1 − 2 + 2βkxk,1)
xk+1,2 = xk,2 − µ (2xk,2 + βk (2xk,2 − 2))

βk+1 = βk + γmax
(
0, x2k+1,1 + x2k+1,2 − 2xk+1,2

)

28 / 96

Example 7.2
Implement the dual ascent problem of Example 7.1 described
by the following iterations (per coordinate):

xk+1,1 = xk,1 − µ (2xk,1 − 2 + 2βkxk,1)
xk+1,2 = xk,2 − µ (2xk,2 + βk (2xk,2 − 2))

βk+1 = βk + γmax
(
0, x2k+1,1 + x2k+1,2 − 2xk+1,2

)

29 / 96

Equality constrained convex problem

Now, we will focus on an equality-constrained convex
optimization problem

min f (x)
s.t. Ax = b

The Lagrangian for that problem is

L (x,β) = f (x) + βT (Ax− b)

so the dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x,βk)

βk+1 = βk + γk (Axk+1 − b)

With appropriate choice of γk the dual function increases in
each step, i.e., L (βk+1) > L (βk).

30 / 96

Equality constrained convex problem

Now, we will focus on an equality-constrained convex
optimization problem

min f (x)
s.t. Ax = b

The Lagrangian for that problem is

L (x,β) = f (x) + βT (Ax− b)

so the dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x,βk)

βk+1 = βk + γk (Axk+1 − b)

With appropriate choice of γk the dual function increases in
each step, i.e., L (βk+1) > L (βk).

31 / 96

Equality constrained convex problem

Now, we will focus on an equality-constrained convex
optimization problem

min f (x)
s.t. Ax = b

The Lagrangian for that problem is

L (x,β) = f (x) + βT (Ax− b)

so the dual ascent method consists of iterating the updates:

xk+1 = argmin
x

L (x,βk)

βk+1 = βk + γk (Axk+1 − b)

With appropriate choice of γk the dual function increases in
each step, i.e., L (βk+1) > L (βk).

32 / 96

Dual decomposition (1).
Dual ascent can lead to a decentralized algorithm if f is
separable f (x) =

∑d
j=1 fj (xj) where xj represents the

corresponding coordinate.

■ Note that matrix A can be also correspondingly
partitioned into columns A =

[
A1A2 · · ·Ad

]
so

Ax =
∑d

j=1Ajxj .
Taking into account that

βT (Ax− b) =
d∑

j=1

(
βTAjxj −

1

d
βTb

)
The Lagrangian can be written as:

L (x,β) =

d∑
j=1

L (xj ,β) =

d∑
j=1

33 / 96

Dual decomposition (1).
Dual ascent can lead to a decentralized algorithm if f is
separable f (x) =

∑d
j=1 fj (xj) where xj represents the

corresponding coordinate.
■ Note that matrix A can be also correspondingly

partitioned into columns A =
[
A1A2 · · ·Ad

]
so

Ax =
∑d

j=1Ajxj .

Taking into account that

βT (Ax− b) =
d∑

j=1

(
βTAjxj −

1

d
βTb

)
The Lagrangian can be written as:

L (x,β) =

d∑
j=1

L (xj ,β) =

d∑
j=1

34 / 96

Dual decomposition (1).
Dual ascent can lead to a decentralized algorithm if f is
separable f (x) =

∑d
j=1 fj (xj) where xj represents the

corresponding coordinate.
■ Note that matrix A can be also correspondingly

partitioned into columns A =
[
A1A2 · · ·Ad

]
so

Ax =
∑d

j=1Ajxj .
Taking into account that

βT (Ax− b) =

d∑
j=1

(
βTAjxj −

1

d
βTb

)

The Lagrangian can be written as:

L (x,β) =

d∑
j=1

L (xj ,β) =

d∑
j=1

35 / 96

Dual decomposition (1).
Dual ascent can lead to a decentralized algorithm if f is
separable f (x) =

∑d
j=1 fj (xj) where xj represents the

corresponding coordinate.
■ Note that matrix A can be also correspondingly

partitioned into columns A =
[
A1A2 · · ·Ad

]
so

Ax =
∑d

j=1Ajxj .
Taking into account that

βT (Ax− b) =

d∑
j=1

(
βTAjxj −

1

d
βTb

)
The Lagrangian can be written as:

L (x,β) =

d∑
j=1

L (xj ,β) =

d∑
j=1

(
fj (xj) + βTAjxj −

1

d
βTb

)

36 / 96

Dual decomposition (1).
Dual ascent can lead to a decentralized algorithm if f is
separable f (x) =

∑d
j=1 fj (xj) where xj represents the

corresponding coordinate.
■ Note that matrix A can be also correspondingly

partitioned into columns A =
[
A1A2 · · ·Ad

]
so

Ax =
∑d

j=1Ajxj .
Taking into account that

βT (Ax− b) =

d∑
j=1

(
βTAjxj −

1

d
βTb

)
The Lagrangian can be written as:

L (x,β) =

d∑
j=1

L (xj ,β) =

d∑
j=1

(
fj (xj) + βTAjxj −

1

d
βTb

)
︸ ︷︷ ︸

Lj(xj ,y)

37 / 96

Dual decomposition (2).

Thus, the minimization step can be split in d separate problems
that can be solved in parallel:

xk+1,j = argmin
xj

Lj (xj ,βk) ∀j

βk+1 = βk + γk (Axk+1 − b)

Each iteration of the dual decomposition method requires a
broadcast (xk+1,j) to the rest of the nodes and a gather
operation to obtain βk+1 locally, and hence, it is similar to the
Map-Reduce scheme introduced previously.

38 / 96

Dual decomposition (2).

Thus, the minimization step can be split in d separate problems
that can be solved in parallel:

xk+1,j = argmin
xj

Lj (xj ,βk) ∀j

βk+1 = βk + γk (Axk+1 − b)

Each iteration of the dual decomposition method requires a
broadcast (xk+1,j) to the rest of the nodes and a gather
operation to obtain βk+1 locally, and hence, it is similar to the
Map-Reduce scheme introduced previously.

39 / 96

Precursor 3. Augmented Lagrangian and the method of
multipliers

To guarantee convergence without the assumption of strict
convexity of f , we can define the augmented Lagrangian:

Lρ (x,β) = f (x) + βT (Ax− b) +
ρ

2
∥Ax− b∥22

This problem is equivalent to the original one and can be solved
by the dual ascent method, which is known in this case as the
method of multipliers.

By definition, xk+1 minimises Lρ (x,βk), so:

0 = ∇xLρ (xk+1,βk)

= ∇xf(xk+1) +AT (βk + ρ (Axk+1 − b))

= ∇xf(xk+1) +ATβk+1

40 / 96

Precursor 3. Augmented Lagrangian and the method of
multipliers

To guarantee convergence without the assumption of strict
convexity of f , we can define the augmented Lagrangian:

Lρ (x,β) = f (x) + βT (Ax− b) +
ρ

2
∥Ax− b∥22

This problem is equivalent to the original one and can be solved
by the dual ascent method, which is known in this case as the
method of multipliers.

By definition, xk+1 minimises Lρ (x,βk), so:

0 = ∇xLρ (xk+1,βk)

= ∇xf(xk+1) +AT (βk + ρ (Axk+1 − b))

= ∇xf(xk+1) +ATβk+1

41 / 96

Augmented Lagrangian and the method of multipliers

Thus, the minimisation step looks similar:

xk+1 = argmin
x

Lρ (x,βk)

βk+1 = βk + ρ (Axk+1 − b)

This method has superior convergence due to its strong
convexity properties, but it is not separable as the former one.

ADMM intends to integrate these two advantages [1].

42 / 96

Augmented Lagrangian and the method of multipliers

Thus, the minimisation step looks similar:

xk+1 = argmin
x

Lρ (x,βk)

βk+1 = βk + ρ (Axk+1 − b)

This method has superior convergence due to its strong
convexity properties, but it is not separable as the former one.

ADMM intends to integrate these two advantages [1].

43 / 96

Augmented Lagrangian and the method of multipliers

Thus, the minimisation step looks similar:

xk+1 = argmin
x

Lρ (x,βk)

βk+1 = βk + ρ (Axk+1 − b)

This method has superior convergence due to its strong
convexity properties, but it is not separable as the former one.

ADMM intends to integrate these two advantages [1].

44 / 96

Alternating Direction Method of Multipliers (1)
ADMM solves problems in the form:

min
x,z

g (x) + h (z)

s.t. Ax+Bz = c

where g and h are convex and the former variable x has been
split into two parts x, z.

The augmented Lagrangian is:

Lρ (x, z,β) = g (x)+h (z)+βT (Ax+Bz− c)+
ρ

2
∥Ax+Bz− c∥22

so, ADMM consists of the iterations:

xk+1 = argmin
x

Lρ (x, zk,βk)

zk+1 = argmin
z

Lρ (xk+1, z,βk)

βk+1 = βk + ρ (Axk+1 +Bzk+1 − c)

45 / 96

Alternating Direction Method of Multipliers (1)
ADMM solves problems in the form:

min
x,z

g (x) + h (z)

s.t. Ax+Bz = c

where g and h are convex and the former variable x has been
split into two parts x, z.

The augmented Lagrangian is:

Lρ (x, z,β) = g (x)+h (z)+βT (Ax+Bz− c)+
ρ

2
∥Ax+Bz− c∥22

so, ADMM consists of the iterations:

xk+1 = argmin
x

Lρ (x, zk,βk)

zk+1 = argmin
z

Lρ (xk+1, z,βk)

βk+1 = βk + ρ (Axk+1 +Bzk+1 − c)

46 / 96

Alternating Direction Method of Multipliers (1)
ADMM solves problems in the form:

min
x,z

g (x) + h (z)

s.t. Ax+Bz = c

where g and h are convex and the former variable x has been
split into two parts x, z.

The augmented Lagrangian is:

Lρ (x, z,β) = g (x)+h (z)+βT (Ax+Bz− c)+
ρ

2
∥Ax+Bz− c∥22

so, ADMM consists of the iterations:

xk+1 = argmin
x

Lρ (x, zk,βk)

zk+1 = argmin
z

Lρ (xk+1, z,βk)

βk+1 = βk + ρ (Axk+1 +Bzk+1 − c)

47 / 96

Alternating Direction Method of Multipliers (2)

1 Although (x, z) can be updated simultaneously, ADMM
proposes a sequential fashion in alternating directions. This
precisely allows for decomposition when g or h are
separable.

2 ADMM can be written slightly differently. Defining the
residual r = Ax+Bz− c and combining the linear and
quadratic terms [2]:

βT r+ (ρ/2)∥r∥22 = (ρ/2)∥r+ (1/ρ)β∥22 − (1/2ρ)∥β∥22
= (ρ/2)∥r+ u∥22 − (ρ/2)∥u∥22

where u = (1/ρ)β is the scaled dual variable.

48 / 96

Alternating Direction Method of Multipliers (2)

1 Although (x, z) can be updated simultaneously, ADMM
proposes a sequential fashion in alternating directions. This
precisely allows for decomposition when g or h are
separable.

2 ADMM can be written slightly differently. Defining the
residual r = Ax+Bz− c and combining the linear and
quadratic terms [2]:

βT r+ (ρ/2)∥r∥22 = (ρ/2)∥r+ (1/ρ)β∥22 − (1/2ρ)∥β∥22
= (ρ/2)∥r+ u∥22 − (ρ/2)∥u∥22

where u = (1/ρ)β is the scaled dual variable.

49 / 96

Alternating Direction Method of Multipliers (3)

Using u, ADMM looks like:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥Ax+Bzk − c+ uk∥22

)
zk+1 = argmin

z

(
h (z) +

ρ

2
∥Axk+1 +Bz− c+ uk∥22

)
uk+1 = uk +Axk+1 +Bzk+1 − c

Under very mild conditions, as k → ∞ ADMM satisfies:

Residual convergence : rk = Axk +Bzk − c → 0

Objective convergence : g (xk) + h (zk) approaches the optimal
Dual variable convergence : βk → β∗ (dual optimal point)

50 / 96

Alternating Direction Method of Multipliers (3)

Using u, ADMM looks like:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥Ax+Bzk − c+ uk∥22

)
zk+1 = argmin

z

(
h (z) +

ρ

2
∥Axk+1 +Bz− c+ uk∥22

)
uk+1 = uk +Axk+1 +Bzk+1 − c

Under very mild conditions, as k → ∞ ADMM satisfies:

Residual convergence : rk = Axk +Bzk − c → 0

Objective convergence : g (xk) + h (zk) approaches the optimal
Dual variable convergence : βk → β∗ (dual optimal point)

51 / 96

ADMM in Machine Learning problems
ML problems can be straightforwardly rewritten in ADMM
form as:

min
x,z

g (x) + h (z)

s.t.x− z = 0

Whose solution is:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥x− zk + uk∥22

)
zk+1 = argmin

z

(
h (z) +

ρ

2
∥xk+1 − z+ uk∥22

)
uk+1 = uk + xk+1 − zk+1

Observe that the two first equations are proximal problems of
the form:

Proxηf (z) = argmin
x

(
f (x) +

1

2η
∥x− z∥22

)

52 / 96

ADMM in Machine Learning problems
ML problems can be straightforwardly rewritten in ADMM
form as:

min
x,z

g (x) + h (z)

s.t.x− z = 0

Whose solution is:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥x− zk + uk∥22

)
zk+1 = argmin

z

(
h (z) +

ρ

2
∥xk+1 − z+ uk∥22

)
uk+1 = uk + xk+1 − zk+1

Observe that the two first equations are proximal problems of
the form:

Proxηf (z) = argmin
x

(
f (x) +

1

2η
∥x− z∥22

)

53 / 96

ADMM in Machine Learning problems
ML problems can be straightforwardly rewritten in ADMM
form as:

min
x,z

g (x) + h (z)

s.t.x− z = 0

Whose solution is:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥x− zk + uk∥22

)
zk+1 = argmin

z

(
h (z) +

ρ

2
∥xk+1 − z+ uk∥22

)
uk+1 = uk + xk+1 − zk+1

Observe that the two first equations are proximal problems of
the form:

Proxηf (z) = argmin
x

(
f (x) +

1

2η
∥x− z∥22

)

54 / 96

Example 7.3
Let’s consider the ridge regression problem from Example 6.1:

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

To solve it using ADMM, we define g(w) = 1
n ∥Xw − y∥22 and

h(z) = λ
2 ∥z∥

2
2

Using the augmented Lagrangian formulation:

Lρ (w, z,β) = g (w) + h (z) + βT (w − z) +
ρ

2
∥w − z∥22

It is easy to find the updating formulas:

wk+1 =
(
2XTX+ nρI

)−1 (
2XTb+ nρzk − nβk

)
zk+1 = (βk + ρwk)/(λ+ ρ)

βk+1 = βk + ρ(wk+1 − zk+1)

55 / 96

Example 7.3
Let’s consider the ridge regression problem from Example 6.1:

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

To solve it using ADMM, we define g(w) = 1
n ∥Xw − y∥22 and

h(z) = λ
2 ∥z∥

2
2

Using the augmented Lagrangian formulation:

Lρ (w, z,β) = g (w) + h (z) + βT (w − z) +
ρ

2
∥w − z∥22

It is easy to find the updating formulas:

wk+1 =
(
2XTX+ nρI

)−1 (
2XTb+ nρzk − nβk

)
zk+1 = (βk + ρwk)/(λ+ ρ)

βk+1 = βk + ρ(wk+1 − zk+1)

56 / 96

Example 7.3
Let’s consider the ridge regression problem from Example 6.1:

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

To solve it using ADMM, we define g(w) = 1
n ∥Xw − y∥22 and

h(z) = λ
2 ∥z∥

2
2

Using the augmented Lagrangian formulation:

Lρ (w, z,β) = g (w) + h (z) + βT (w − z) +
ρ

2
∥w − z∥22

It is easy to find the updating formulas:

wk+1 =
(
2XTX+ nρI

)−1 (
2XTb+ nρzk − nβk

)
zk+1 = (βk + ρwk)/(λ+ ρ)

βk+1 = βk + ρ(wk+1 − zk+1)

57 / 96

Example 7.3
Let’s consider the ridge regression problem from Example 6.1:

1

n
∥Xw − y∥22 +

λ

2
∥w∥22

To solve it using ADMM, we define g(w) = 1
n ∥Xw − y∥22 and

h(z) = λ
2 ∥z∥

2
2

Using the augmented Lagrangian formulation:

Lρ (w, z,β) = g (w) + h (z) + βT (w − z) +
ρ

2
∥w − z∥22

It is easy to find the updating formulas:

wk+1 =
(
2XTX+ nρI

)−1 (
2XTb+ nρzk − nβk

)
zk+1 = (βk + ρwk)/(λ+ ρ)

βk+1 = βk + ρ(wk+1 − zk+1)

58 / 96

Example 7.3
Look at the notebook Example_7_3, which applies the solution
for a problem with two variables and four samples.

59 / 96

General L1 Regularized Loss Minimization (1)

Consider the generic problem:

min
x

(g (x) + λ ∥x∥1) →
min
x,z

(g (x) + h (z))

s.t. : x− z = 0

where g is any convex loss function and h (z) = λ ∥z∥1.

Using the scaled dual variable ADMM form, the problem can be
written as:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥x− zk + uk∥22

)
zk+1 = Soft

(
xk+1 + uk,

λ

ρ

)
uk+1 = uk + xk+1 − zk+1

60 / 96

General L1 Regularized Loss Minimization (1)

Consider the generic problem:

min
x

(g (x) + λ ∥x∥1) →
min
x,z

(g (x) + h (z))

s.t. : x− z = 0

where g is any convex loss function and h (z) = λ ∥z∥1.

Using the scaled dual variable ADMM form, the problem can be
written as:

xk+1 = argmin
x

(
g (x) +

ρ

2
∥x− zk + uk∥22

)
zk+1 = Soft

(
xk+1 + uk,

λ

ρ

)
uk+1 = uk + xk+1 − zk+1

61 / 96

General L1 Regularized Loss Minimization (2)

■ Soft (·, ·) refers to the thresholding operator defined in
Chapter 3.

■ Depending on g term
xk+1 = argmin

x

(
g (x) + ρ

2 ∥x− zk + uk∥22
)

can be solved

using different approaches.

▶ If g is smooth, it can be solved using Newton,
quasi-Newton, or the conjugate gradient algorithms.

▶ If quadratic, it leads to a set of linear equations.

▶ If non-smooth, proximal, or subdifferential methods have to
be applied.

62 / 96

case_study_7_1

Use the ADMM formulation to solve the LASSO cost function.
In this case, g(w) = 1

n ∥Xw − y∥22 and g(z) = λ ∥z∥1

Thus, the algorithm will look like this:

wk+1 =

(
2

n
XTX+ ρI

)−1(2

n
XTy + ρ (zk − uk)

)
zk+1 = Soft

(
wk+1 + uk,

λ

ρ

)
uk+1 = uk +wk+1 − zk+1

63 / 96

case_study_7_1

Use the ADMM formulation to solve the LASSO cost function.
In this case, g(w) = 1

n ∥Xw − y∥22 and g(z) = λ ∥z∥1

Thus, the algorithm will look like this:

wk+1 =

(
2

n
XTX+ ρI

)−1(2

n
XTy + ρ (zk − uk)

)
zk+1 = Soft

(
wk+1 + uk,

λ

ρ

)
uk+1 = uk +wk+1 − zk+1

64 / 96

case_study_7_1

You should obtain a result like the following one:

65 / 96

The ADMM Logistic-L2 algorithm

Let’s remember the logistic loss function and add a L2

regularisation term:

L =
1

n

n∑
i=1

log(1 + exp (−yiw
Txi)) +

λ

2
∥w∥22

66 / 96

The ADMM Logistic-L2 algorithm

Let’s remember the logistic loss function and add a L2

regularisation term:

L =
1

n

n∑
i=1

log(1 + exp (−yiw
Txi))︸ ︷︷ ︸

g(w)

+
λ

2
∥z∥22︸ ︷︷ ︸
h(z)

∇g(w) =
1

n

n∑
i=1

−yixi

(
1

1 + exp (yiwTxi)

)

67 / 96

The ADMM Logistic-L2 algorithm

Let’s remember the logistic loss function and add a L2

regularisation term:

L =
1

n

n∑
i=1

log(1 + exp (−yiw
Txi))︸ ︷︷ ︸

g(w)

+
λ

2
∥z∥22︸ ︷︷ ︸
h(z)

∇g(w) =
1

n

n∑
i=1

−yixi

(
1

1 + exp (yiwTxi)

)
Therefore, the minimisation of wk+1 step can addressed using a
gradient-based algorithm and zk+1 can be solved using the
prox_quadratic function.

68 / 96

case_study_7_2

You should obtain a result like the following one:

69 / 96

Consensus ADMM

The main idea is to formulate ML problems using the ADMM
framework within a new perspective known as Consensus.

Let’s consider a simple problem:

min
x

f (x) = min
x

nb∑
i=1

gi (x)

where
■ x ∈ Rd+1 and gi : Rd+1 → R ∪ {+∞} are convex.
■ Initially, let’s consider h (x) = 0.
■ nb refers to the number of blocks or nodes where our data is

collected.

70 / 96

Consensus ADMM

The main idea is to formulate ML problems using the ADMM
framework within a new perspective known as Consensus.

Let’s consider a simple problem:

min
x

f (x) = min
x

nb∑
i=1

gi (x)

where
■ x ∈ Rd+1 and gi : Rd+1 → R ∪ {+∞} are convex.
■ Initially, let’s consider h (x) = 0.
■ nb refers to the number of blocks or nodes where our data is

collected.

71 / 96

Consensus ADMM

The main idea is to formulate ML problems using the ADMM
framework within a new perspective known as Consensus.

Let’s consider a simple problem:

min
x

f (x) = min
x

nb∑
i=1

gi (x)

where
■ x ∈ Rd+1 and gi : Rd+1 → R ∪ {+∞} are convex.
■ Initially, let’s consider h (x) = 0.
■ nb refers to the number of blocks or nodes where our data is

collected.

72 / 96

Initial simple approach (2)
Suppose that we intend to solve a LS problem with n samples:

min
x

f (x) =
1

n

n∑
i=1

(
aTi x− bi

)2

but we want to split our calculations into two nodes:

min
x

f (x) =

 1

n

n/2∑
i=1

(
aTi x− bi

)2
+

1

n

n∑
n/2+1

(
aTi x− bi

)2
We can define for each node the following functions to optimise:

g1 (x) =
1

n

n/2∑
i=1

(
aTi x− bi

)2
, g2 (x) =

1

n

n∑
n/2+1

(
aTi x− bi

)2

73 / 96

Initial simple approach (2)
Suppose that we intend to solve a LS problem with n samples:

min
x

f (x) =
1

n

n∑
i=1

(
aTi x− bi

)2
but we want to split our calculations into two nodes:

min
x

f (x) =

 1

n

n/2∑
i=1

(
aTi x− bi

)2
+

1

n

n∑
n/2+1

(
aTi x− bi

)2

We can define for each node the following functions to optimise:

g1 (x) =
1

n

n/2∑
i=1

(
aTi x− bi

)2
, g2 (x) =

1

n

n∑
n/2+1

(
aTi x− bi

)2

74 / 96

Initial simple approach (2)
Suppose that we intend to solve a LS problem with n samples:

min
x

f (x) =
1

n

n∑
i=1

(
aTi x− bi

)2
but we want to split our calculations into two nodes:

min
x

f (x) =

 1

n

n/2∑
i=1

(
aTi x− bi

)2
+

1

n

n∑
n/2+1

(
aTi x− bi

)2
We can define for each node the following functions to optimise:

g1 (x) =
1

n

n/2∑
i=1

(
aTi x− bi

)2
, g2 (x) =

1

n

n∑
n/2+1

(
aTi x− bi

)2

75 / 96

Initial simple approach (3)

The goal now is to solve this problem so that a different
processing unit can handle each term.

This problem can be rewritten assuming that each node has its
local version of the vector xi and a shared global variable z

min
xi

∑nb
i=1 gi (xi)

s.t.xi − z = 0 i = 1, · · · , nb

with nb = 2

This formulation is called the Global Consensus Problem,
since the constraint is that all the local variables should agree.

76 / 96

Initial simple approach (3)

The goal now is to solve this problem so that a different
processing unit can handle each term.

This problem can be rewritten assuming that each node has its
local version of the vector xi and a shared global variable z

min
xi

∑nb
i=1 gi (xi)

s.t.xi − z = 0 i = 1, · · · , nb

with nb = 2

This formulation is called the Global Consensus Problem,
since the constraint is that all the local variables should agree.

77 / 96

Initial simple approach (3)

The goal now is to solve this problem so that a different
processing unit can handle each term.

This problem can be rewritten assuming that each node has its
local version of the vector xi and a shared global variable z

min
xi

∑nb
i=1 gi (xi)

s.t.xi − z = 0 i = 1, · · · , nb

with nb = 2

This formulation is called the Global Consensus Problem,
since the constraint is that all the local variables should agree.

78 / 96

Initial simple approach (4)

ADMM can be derived directly:

Lρ (x1, · · · ,xnb , z,β1, · · ·βnb) =
∑nb

i=1

(
gi (xi) + βT

i (xi − z) + ρ
2
∥xi − z∥22

)

Making a similar development as in the centralized ADMM, we
can obtain the following algorithm:

xi,k+1 = argmin
xi

(
gi (xi) + βT

i,k (xi − zk) +
ρ

2
∥xi − zk∥22

)
zk+1 =

1

nb

nb∑
i=1

(
xi,k+1 +

1

ρ
βi,k

)
βi,k+1 = βi,k + ρ (xi,k+1 − zk+1)

■ Steps carried out independently for every node.
■ Step performed in a fusion or data collector.

79 / 96

Initial simple approach (4)

ADMM can be derived directly:

Lρ (x1, · · · ,xnb , z,β1, · · ·βnb) =
∑nb

i=1

(
gi (xi) + βT

i (xi − z) + ρ
2
∥xi − z∥22

)
Making a similar development as in the centralized ADMM, we
can obtain the following algorithm:

xi,k+1 = argmin
xi

(
gi (xi) + βT

i,k (xi − zk) +
ρ

2
∥xi − zk∥22

)
zk+1 =

1

nb

nb∑
i=1

(
xi,k+1 +

1

ρ
βi,k

)
βi,k+1 = βi,k + ρ (xi,k+1 − zk+1)

■ Steps carried out independently for every node.
■ Step performed in a fusion or data collector.

80 / 96

Initial simple approach (4)

ADMM can be derived directly:

Lρ (x1, · · · ,xnb , z,β1, · · ·βnb) =
∑nb

i=1

(
gi (xi) + βT

i (xi − z) + ρ
2
∥xi − z∥22

)
Making a similar development as in the centralized ADMM, we
can obtain the following algorithm:

xi,k+1 = argmin
xi

(
gi (xi) + βT

i,k (xi − zk) +
ρ

2
∥xi − zk∥22

)
zk+1 =

1

nb

nb∑
i=1

(
xi,k+1 +

1

ρ
βi,k

)
βi,k+1 = βi,k + ρ (xi,k+1 − zk+1)

■ Steps carried out independently for every node.
■ Step performed in a fusion or data collector.

81 / 96

Initial simple approach (5)

82 / 96

Fully connected networks (1)

Let’s now include the regularisation effect:

min
xi

∑nb
i=1 gi (xi) + h(z)

s.t.xi − z = 0 i = 1, · · · , nb

The resulting ADMM algorithm is:

xi,k+1 = argmin
xi

(
gi (xi) + βT

i,k (xi − zk) +
ρ

2
∥xi − zk∥22

)
zk+1 = argmin

z

(
h(z) +

nb∑
i=1

(
−βT

i,kz+
ρ

2
∥xi,k+1 − z∥22

))
βi,k+1 = βi,k + ρ (xi,k+1 − zk+1)

83 / 96

Fully connected networks (1)

Let’s now include the regularisation effect:

min
xi

∑nb
i=1 gi (xi) + h(z)

s.t.xi − z = 0 i = 1, · · · , nb

The resulting ADMM algorithm is:

xi,k+1 = argmin
xi

(
gi (xi) + βT

i,k (xi − zk) +
ρ

2
∥xi − zk∥22

)
zk+1 = argmin

z

(
h(z) +

nb∑
i=1

(
−βT

i,kz+
ρ

2
∥xi,k+1 − z∥22

))
βi,k+1 = βi,k + ρ (xi,k+1 − zk+1)

84 / 96

Fully connected networks (2)

Defining again the residual r = (xi − zk) as before, and using
the scaled dual variable ui,k = 1

ρβi,k, ADMM looks like:

xi,k+1 = argmin
xi

(
gi (xi) +

ρ

2
∥xi − zk + ui,k∥22

)
zk+1 = argmin

z

(
h(z) +

nbρ

2
∥z− x̄k+1 − ūk∥22

)
ui,k+1 = ui,k + xi,k+1 − zk+1

where x̄k = 1
nb

∑nb
i=1 xi,k and ūk = 1

nb

∑nb
i=1 ui,k.

85 / 96

Example 7.4

Calculate the solution of Example 6.1 again, but this time as an
ADMM distributed model splitting the samples into four nodes.

min
w

f (w) →

 min
w

1
4

4∑
i=1

(Xiwi − yi)
2 + λ

2 ∥z∥
2
2

s.t.wi − z = 0 i = 1, · · · , 4

The Lagrangian in this case is

Lρ (w1,w2,w3,w4,β1,β2,β3,β4, z) =
1

4

4∑
i=1

(Xiwi − yi)
2+

λ

2
∥z∥22+

+
4∑

i=1

βT
i (wi − z) +

ρ

2

4∑
i=1

∥wi − z∥22

86 / 96

Example 7.4

Calculate the solution of Example 6.1 again, but this time as an
ADMM distributed model splitting the samples into four nodes.

min
w

f (w) →

 min
w

1
4

4∑
i=1

(Xiwi − yi)
2 + λ

2 ∥z∥
2
2

s.t.wi − z = 0 i = 1, · · · , 4

The Lagrangian in this case is

Lρ (w1,w2,w3,w4,β1,β2,β3,β4, z) =
1

4

4∑
i=1

(Xiwi − yi)
2+

λ

2
∥z∥22+

+

4∑
i=1

βT
i (wi − z) +

ρ

2

4∑
i=1

∥wi − z∥22

87 / 96

Example 7.4

Taking derivatives with respect to w, z and β...

w∗
i =

(
XT

i Xi + 2ρI
)−1 (

2ρz− 2βi +XT
i yi

)
z∗ =

∑nb
i=1 βi + ρ

∑nb
i=1wi

λ+ 4ρ

0 = wi − z

We can directly translate them to the ADMM algorithm.
Notebook Example 7.4 shows an example for nb = 4.

88 / 96

Example 7.4

89 / 96

Case_study_7_3

Implement the LASSO algorithm using distributed ADMM. In
this case, ADMM looks like:

wi,k+1 = argmin
wi

(
1

n
∥Xiwi − yi∥22 +

ρ

2
∥wi − zk + ui,k∥22

)
zk+1 = Soft (w̄k+1 + ūk, λ/ρn)

ui,k+1 = ui,k +wi,k+1 − zk+1

The w−update is very simple in this case:

wi,k+1 =

(
2

n
XT

i Xi + ρI

)−1(2

n
XT

i yi + ρ (zk − ui,k)

)
It can be implemented using the prox_quadratic function used
before.

90 / 96

Case_study_7_3

Implement the LASSO algorithm using distributed ADMM. In
this case, ADMM looks like:

wi,k+1 = argmin
wi

(
1

n
∥Xiwi − yi∥22 +

ρ

2
∥wi − zk + ui,k∥22

)
zk+1 = Soft (w̄k+1 + ūk, λ/ρn)

ui,k+1 = ui,k +wi,k+1 − zk+1

The w−update is very simple in this case:

wi,k+1 =

(
2

n
XT

i Xi + ρI

)−1(2

n
XT

i yi + ρ (zk − ui,k)

)
It can be implemented using the prox_quadratic function used
before.

91 / 96

Case_study_7_3

92 / 96

Case_study_7_4

The goal of this case study is to implement the Ridge algorithm
using the distributed ADMM. It is very similar to the LASSO
problem but with a different second equation.

wi,k+1 = argmin
xi

(
1

n
∥Xiwi − yi∥22 +

ρ

2
∥wi − zk + ui,k∥22

)
zk+1 = argmin

z

(
λ

2
∥z∥22 +

nρ

2
∥z− w̄k+1 − ūk∥22

)
ui,k+1 = ui,k +wi,k+1 − zk+1

93 / 96

Case_study_7_4

94 / 96

Questions?

95 / 96

References

[1] Stephen Boyd et al. “Distributed optimization and statistical
learning via the alternating direction method of multipliers”. In:
Foundations and Trends® in Machine learning 3.1 (2011),
pp. 1–122.

[2] Jean Gallier and Jocelyn Quaintance. “Fundamentals of
optimization theory with applications to machine learning”. In:
University of Pennsylvania Philadelphia, PA 19104 (2019).

96 / 96

Thank You
Julián D. Arias-Londoño

julian.arias@upm.es

	Motivation and precursors
	Alternating Direction Method of Multipliers (ADMM)
	Consensus ADMM
	Consensus in fully connected networks

	References

