Student_exam_oriented_ex_7_2#
!wget --no-cache -O init.py -q https://raw.githubusercontent.com/jdariasl/OTBD/main/content/init.py
import init; init.init(force_download=False)
#!sudo apt install cm-super dvipng texlive-latex-extra texlive-latex-recommended
import numpy as np
from local.lib.data import load_data
import scipy as sc
import matplotlib.pyplot as plt
#!pip install cvxpy
import cvxpy as cp
Exercise#
Algorithm: Distributed ADMM
Problem: Binary classification using SVM
Breast cancer dataset
10 features: ID of patient and biological properties of the tumor.
We use 8 features: \(\bf{X}\) is a \(500\times 8\) matrix containing 500 dataset entries.
Target: to classify the tumor as malign or benign.
Thus, \({\bf{y}}\) is a \(500\times1\) vector containing the labels
Note that the medical record is a sensitive information that we do not want to share among nodes; we use distributed ADMM to train the classifier without exchanging the data (privacy preserving).
Some hints
We assume that each \(j\)-th worker has its own set of data samples, so the function we want to solve is:
The augmented Lagrangian is:
So, the subgradient of \(L_{\rho}\) with respect to \({\bf{w}}_j\) is:
Since in this case is not possible to isolate \({\bf{w}}_j\) you must use a subgradient update for updating \({\bf{w}}_j\), and run it for a given number of iterations.
Note that we are assuming all the workers have access to the same number of samples (\(m\)).
#load data
X,y = load_data("classification", 7)
n,d = X.shape
# Constant parameters
lamb = 0.01 # regularisation parameter
Niter= 3000 # Number of iterations for each algorithm
eta = 0.001 # step size
#cvx_solver
def solver_cvx(n,X,Y,lamb,objective_fn):
n_columns = X.shape[1]
w = cp.Variable(n_columns)
lambd = cp.Parameter(nonneg=True)
lambd.value = lamb
problem = cp.Problem(
cp.Minimize(objective_fn(n, X, Y, w, lambd))
)
problem.solve()
return w.value
# Definition of the problem
#===================================
loss_fn = lambda n, X, Y, w: (1/n)*cp.sum(cp.pos(1-cp.multiply(Y,X @ w)))
reg_L2 = lambda w: cp.pnorm(w, p=2)**2
loss_svm_L2 = lambda n, X, Y, w, lambd: loss_fn(n, X, Y, w) + (lambd/2) * reg_L2(w)
# Solution of the empirical risk using CVX
w_svm_cvx=solver_cvx(n,X,y,lamb,loss_svm_L2)
w = cp.Variable(w_svm_cvx.shape[0])
w.value = w_svm_cvx
f_cvx=loss_svm_L2(n,X,y,w_svm_cvx,lamb).value
print(f'The loss function f at the optimum takes the value {f_cvx}')
f_cvx = (np.kron(f_cvx,np.ones((1,Niter+1)))).flatten()
The loss function f at the optimum takes the value 0.42642274201112185
#Function that estimates the loss for several w at once.
f = lambda n, X, Y, w, lambd: (1/n)*np.sum(np.maximum(np.zeros((n,w.shape[1])),np.ones((n,w.shape[1]))-np.diag(Y)@(X@w)),axis=0) + (lambd/2)*np.sum(w**2,axis=0)
# Distributed ADMM
#Constants
ro=1 # Quadratic term
nb=4 #Number of nodes (to split samples)
m = int(n/nb) #Number of samples per node
subgrad_steps = 10 #Number of gradient steps per ADMM update
w_admm_d = np.zeros((nb,d,Niter+1))
b_admm_d = np.zeros((nb,d,Niter+1))
z_admm_d = np.zeros((d,Niter+1))
for k in range(Niter):
#Complete the code including the updating formulas for centrilized ADMM.
# Keep the weigths values for all the iterations
# This loop simulates the processing to execute in every node
for j in range(nb):
Xj = X[j*m:(j+1)*m,:] #Input Samples observed by node j
yj = y[j*m:(j+1)*m] #Target values of the corresponding samples.
#Update w_j,k+1---------------
for _ in range(subgrad_steps):
subgrad = ...
w_admm_d[j][:,k+1] = ...
# Update z_k+1------------------
z_admm_d[:,k+1] = ....
# Update beta_k+1
b_admm_d[:,:,k+1] = ...
f_admm_d=f(n,X,y,z_admm_d,lamb)
plt.rcParams.update({
"text.usetex": True,
"font.family": "Helvetica"
})
t = range(Niter+1)
plt.plot(t, 10*np.log10((f_admm_d-f_cvx)**2+np.finfo(float).eps), color = 'r',label = 'Distributed ADMM')
plt.grid()
plt.legend()
plt.xlabel('Iteration')
plt.ylabel(r'$10\log(f({\bf{x}})-f*)^2)$ (MSE)')
plt.show()